【图像分割】基于粒子群、文化、进化策略算法实现化石图像分割附matlab代码

该博客详细介绍了使用进化策略算法、文化算法、模拟退火算法和粒子群优化结合模拟退火算法进行图像处理的过程。首先通过进化策略调整图像直方图,然后用文化算法量化图像并选择最佳阈值,接着利用模拟退火算法选择最优边缘检测滤波器,最后通过粒子群优化和模拟退火算法进行图像分割。提供了仿真代码和运行结果,并引用了相关文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 内容介绍

Start

Loading Image

Training Using Evolution Strategy Algorithm (Input: Raw Image and Target Histogram Vector)

Goal: To Adjusting the Intensity by Equalizing the Image Histogram

Initialize the Population Size N and Number of Generations

While (number of generations is not reached)

Recombination of Attributes and Variances of Individuals

Mutation of Attributes and Variances

Evaluation of Fitness Function for Individuals

Selection for New and Best Individuals (Best Target Histogram Value)

End While

Apply Best Selected Target Histogram Vector

End of ES

Output: Evolutionary Intensity Adjusted of Target Histogram for Raw Input Image

Training Using Cultural Algorithm (Input: ES Equalized Histogram Image and Threshold Levels Vector)

Goal: To Quantize the Image by Fitting Threshold Level

Initialize the Population Size N and Number of Generations

While (number of generations is not reached)

Fitness Evaluation

Updating Belief Space

Reproduction Operators

Influence and Acceptance Functions

Selecting Best Individuals (Best Threshold Value)

End While

Apply Best Selected Threshold Level Vector

End of CA

Output: Evolutionary Fitted Threshold Level for Input Image

Training Using Simulated Annealing Algorithm (Input: Quantized Image and Filter Matrix)

Goal: To Select Best Edge Filters

Initialize the Population Size N and Number of Generations

While (number of generations is not reached)

Objective Function Evaluation

If Objective Function Decreases

Update the Best Solution for Each Filter Vector

Reduce the Current Temperature

Generate a New Trial Solution and Go to Evaluation Step

Else If Metropolis Criterion Is Meet

Go to Update Step

Else

Go to Reduce Temperature Step

End While

Apply Best Selected Edge Filter

End of SA

Output: Evolutionary Edge Detected Image

Training Using Particle Swarm Optimization + SA (Input: Edge Detected Input Image)

Goal: To Segment the Input Image

Initialize the Population Size N and Number of Generations

While (number of generations is not reached)

Initialized Particles with Random Position and Velocity for PSO

Evaluate the Fitness of Particles for each Pixel and Their Corresponding Distance for PSO

Objective Function Evaluation for SA as Optimizer

Find and update pbest and gbest for PSO

Reduce The Current Temperature for SA

Calculate and Update Velocity and Position for PSO

Generate a New Trial Solution and Go to Evaluation Step for SA

Show gbest the Optimal Solution for PSO

Desirable Temperature Reached for SA

Update the Best Solution Found for Pixel and Distance by PSO+SA

End While

Apply Best Clusters Found on Image to Segment

End of PSOSA

Overlay All Evolutionary Techniques

Output: Evolutionary Segmented Image

End​

2 仿真代码

function Culture = AdjustCulture(Culture, spop)

n = numel(spop);

nVar = numel(spop(1).Position);

for i = 1:n

if spop(i).Cost<Culture.Situational.Cost

Culture.Situational = spop(i);

end

for j = 1:nVar

if spop(i).Position(j)<Culture.Normative.Min(j) ...

|| spop(i).Cost<Culture.Normative.L(j)

Culture.Normative.Min(j) = spop(i).Position(j);

Culture.Normative.L(j) = spop(i).Cost;

end

if spop(i).Position(j)>Culture.Normative.Max(j) ...

|| spop(i).Cost<Culture.Normative.U(j)

Culture.Normative.Max(j) = spop(i).Position(j);

Culture.Normative.U(j) = spop(i).Cost;

end

end

end

Culture.Normative.Size = Culture.Normative.Max-Culture.Normative.Min; 

end

3 运行结果

4 参考文献

[1]余胜威. 基于FODPSO算法的图像分割及DSP实现[D]. 西南交通大学, 2016.

[2]王建宾. 基于粒子群优化絮体图像分割算法的设计和应用[D]. 华东交通大学.

Mousavi, S. M. H. (2022). Bio-Inspired Fossil Image Segmentation for %% Paleontology. International Journal of Mechatronics, Electrical and %% Computer Technology (IJMEC), 12(45), 5243-5249.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值