【图像融合】基于方向离散余弦变换和主成分分析的图像融合附matlab代码

该文提出了一种结合迭代块级主成分平均(IBLPCA)域中较大值交流(AC)系数、光照归一化和模糊增强的新图像融合方法。实验结果显示,所提算法优于现有技术。代码示例展示了基于方向离散余弦变换(DDCT)的融合规则,包括平均、最大和能量规则。此外,还提供了性能评估指标和参考文献。

 1 简介

摘要:

The purpose of image fusion is to merge relevant information from multiple images right into a single image. In this paper, by conducting the review it has been discovered that the majority of the existing techniques are based upon transform domain therefore it could results in some artifacts which might decrease the execution of the transform based vision fusion techniques. Moreover it is already been discovered that the issue of the uneven illuminate has already been neglected in the absolute most of existing focus on fusion. Therefore to overcome these issues, a fresh method which integrates the larger valued Alternating Current (AC) coefficients calculated in iterative block level principal component averaging (IBLPCA) domain base fusion with illuminate normalization and fuzzy enhancement has been proposed in this paper. The experimental results show the efficiency of proposed algorithm over existing work.

​2 部分代码

%function[] = DDCTIFdemo()% DDCT (Directional Discrete Cosine Transform) based image fusion - demo% VPS Naidu, MSDF Lab, CSIR-NAL, March 2014% Reference: "? %       Journal of Optics, Vol. 43, No.1, pp.48-61, March 2014.%%close all;clear all;home;%%dflg = 1; % 0: no display OR 1: displayaflag = 1; % 1: Average, 2: max rule OR 3: energy rulebs = 4; %[4 8 16 32 64 128 256];  block size%%% insert imagesimt = im2double(imread('saras9t.jpg'));im1 = im2double(imread('saras91.jpg'));im2 = im2double(imread('saras92.jpg'));if dflg == 1    figure(1);    subplot(121);imshow(im1);title('image to be fused - im1');    subplot(122);imshow(im2);title('image to be fused - im2');    pause(1);end%%mode = [0 1 3 4 5 6 7 8]; % directional modelmode = length(mode);%% if aflag == 1 % fusion by DDCT average rule    h1 = waitbar(0,'Please wait...');    for j=1:lmode        imf1{j} = DDCTIFav(im1,im2,bs,mode(j));        waitbar(j/lmode,h1);    end    close(h1);end%%if aflag == 2 % fusion by DDCT max rule    h1 = waitbar(0,'Please wait...');    for j=1:lmode        imf1{j} = DDCTIFmax(im1,im2,bs,mode(j));        waitbar(j/lmode,h1);    end    close(h1);end%%if aflag == 3 % fusion by DDCT energy rule    h1 = waitbar(0,'Please wait...');    for j=1:lmode        imf1{j} = DDCTIFek(im1,im2,bs,mode(j));        waitbar(j/lmode,h1);    end    close(h1);end%%% fusion by PCAimf = fuse_pca(imf1{1},imf1{2},imf1{3},imf1{4},imf1{5},imf1{6},imf1{7},imf1{8});%%% Performance evaluation metrics[RMSE,SF] = im_fuse_per_eval(imt,imf);%%% display resultsif dflg == 1    figure(2);    subplot(121); imshow(imf); title('fused image');        imd = imt-imf;    subplot(122); imshow(imd); title('error image');endfprintf('\nRMSE :  %3f2', RMSE);fprintf('\nSF   :  %3f2', SF);fprintf('\n\n');%%

3 仿真结果

4 参考文献

[1]赵晓雷. 基于IHS变换和主成分分析变换的图像融合[J]. 科学技术与工程, 2010(20):4.

[2] Kaur P . Hybrid PCA-DCT Based Image Fusion For Medical Images. 

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值