1 简介
基于帝国企鹅算法求解多扇区航空调度问题



2 部分代码
function [bestY,bestX,recording]=AFO(x,y,option,data)%% Authority%Author: Zhe Yang% E-mail: 454170989@qq.com% School:University of Manchester%% Input% x----positions of initialized populaiton% y----fitnesses of initialized populaiton% option-----parameters set of the algorithm% data------Pre-defined parameters% This parameter is used for solving complex problems is passing case data%% outPut% bestY ----fitness of best individual% bestX ----position of best individual% recording ---- somme data was recorded in this variable%% initializationpe=option.pe;L=option.L;gap0=option.gap0;gap=gap0;dim=option.dim;recording.bestFit=zeros(option.maxIteration+1,1);recording.meanFit=zeros(option.maxIteration+1,1);At=randn(option.numAgent,option.dim);count=1;%% center of population[y_c,position]=min(y);x_c=x(position(1),:);At_c=At(position(1),:);%% memory of populationy_m=y;x_m=x;%% update recordingrecording.bestFit(1)=y_c;recording.meanFit(1)=mean(y_m);%% main loopfor iter=1:option.maxIteration%Dmp(['AFO,iter:',num2str(iter),',minFit:',num2str(y_c)])%% Moving Strategy I for center of populationif rem(iter, gap)==0c0=exp(-30*(iter-gap0)/option.maxIteration); % EQ.2-11Dx=ones(1,dim);Dx=c0*Dx/norm(Dx)*norm(option.v_ub-option.v_lb)/2; %EQ.2-12% +△xfor j=1:dimtempX(j,:)=x_c;tempX(j,j)=x_c(1,j)+Dx(j);if tempX(j,j)>option.ub(j)tempX(j,j)=option.ub(j);Dx(1,j)=tempX(j,j)-x_c(1,j);endif tempX(j,j)<option.lb(j)tempX(j,j)=option.lb(j);Dx(1,j)=tempX(j,j)-x_c(1,j);endtempY(j,:)=option.fobj(tempX(j,:),option,data);if tempY(j)*y_c<0g0(1,j)=(log(tempY(j))-log(y_c))./Dx(j); %EQ.2-18elsetemp=[tempY(j),y_c];temp=temp+min(temp)+eps;g0(1,j)=(log(temp(1))-log(temp(2)))./Dx(j);endg0(isnan(g0))=0;endG0=-g0(1,:)*norm(option.v_ub-option.v_lb)/2/norm(g0(1,:)); % part of Eq 2-18G0(1,G0(1,:)>option.v_ub)=G0(1,G0(1,:)>option.v_ub)/max(G0(1,G0(1,:)>option.v_ub))*max(option.v_ub(G0(1,:)>option.v_ub));G0(1,G0(1,:)<option.v_lb)=G0(1,G0(1,:)<option.v_lb)/min(G0(1,G0(1,:)<option.v_lb))*min(option.v_lb(G0(1,:)<option.v_lb));G01=G0;% -△xDx=-ones(1,dim);Dx=c0*Dx/norm(Dx)*norm(option.v_ub-option.v_lb)/2;for j=1:dimtempX(j+dim,:)=x_c;tempX(j+dim,j)=x_c(1,j)+Dx(j);if tempX(j+dim,j)>option.ub(j)tempX(j+dim,j)=option.ub(j);Dx(1,j)=tempX(j,j)-x_c(1,j);endif tempX(j+dim,j)<option.lb(j)tempX(j+dim,j)=option.lb(j);Dx(1,j)=tempX(j,j)-x_c(1,j);endif minY<y_cy_c=tempY(no);x_c=tempX(no,:);endif rand>(no-dim*2)/(option.numAgent-dim*2)*(option.maxIteration-iter)/option.maxIterationgap=max(option.gapMin,gap-option.dec); %EQ.2-15endelsefor i=1:option.numAgentp =tanh(abs(y(i)-y_c)); %EQ.2-30if rand<p*(option.maxIteration-iter)/option.maxIteration% EQ 2-28At(i,:)=option.w2*At(i,:)+option.w4*rand(size(x(1,:))).*(x_c-x(i,:))+option.w5*rand(size(x(1,:))).*(x_m(i,:)-x(i,:));x(i,:)=x(i,:)+At(i,:); %EQ 2-29x(i,:)=checkX(x(i,:),option,data);tempY(i,:)=y(i);y(i)=option.fobj(x(i,:),option,data);if tempY(i,:)<y(i)for j=1:dimr1=randi(option.numAgent);r2=randi(option.numAgent);v(i,j)=rand.*(x_m(r1,j)-x_m(r2,j))*-sign(y_m(r1)-y_m(r2));if std(x_m(:,j))<=exp(-20*iter/option.maxIteration)*(option.v_ub(j)-option.v_lb(j))/2if v(i,j)==0v(i,j)=randn*(option.v_ub(j)-option.v_lb(j))/2;elsev(i,j)=rand.*sign(x_m(r1,j)-x_m(r2,j))*-sign(y_m(r1)-y_m(r2))*(option.v_ub(j)-option.v_lb(j))/2;endendendendelseg0=randn(size(At_c));r1=randi(option.numAgent);r2=randi(option.numAgent);endif count>Lfor i=1:option.numAgentx(i,:)=(option.ub-option.lb)*rand+option.lb;y(i)=option.fobj(x(i,:),option,data);if y(i)<y_m(i)y_m(i)=y(i);x_m(i,:)=x(i,:);if y_m(i)<y_cy_c=y_m(i);x_c=x_m(i,:);At_c=At(i,:);endendendcount=0;end%% 更新记录recording.bestFit(1+iter)=y_c;recording.meanFit(1+iter)=mean(y_m);% recording.std(1+iter)=mean(std(x_m));% recording.DC(1+iter)=norm(x_m-repmat(x_c,option.numAgent,1));% recording.x1(1+iter,:)=x(1,:);endbestY=y_c;bestX=x_c;end%%
3 仿真结果


4 参考文献
[1]芮钧, 陈守伦. MATLAB粒子群算法工具箱求解水电站优化调度问题[J]. 中国农村水利水电, 2009(1):3.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文介绍了一种名为AFO的算法,通过帝国企鹅策略解决复杂航空调度问题。作者使用MATLAB代码详细展示了如何初始化、移动策略和更新过程,最终通过仿真结果展示算法性能。关键部分涉及群体中心更新、个体位置调整和竞争合作机制。

被折叠的 条评论
为什么被折叠?



