【图像去噪】基于BdCNN算法实现图像去噪含Matlab源码

本文提出了一种基于卷积神经网络(CNN)的学习方法,用于有效去除图像中的混合高斯-脉冲噪声。该方法无需预处理去除脉冲噪声或精确的噪声水平估计,能处理不同级别的噪声。通过生成大量带有不同噪声水平的训练数据,训练CNN模型进行去噪。实验结果验证了方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

The removal of mixed noise is a stiff problem since the distribution of the noise cannot be predicted accurately. The most common mixed noise is the combination of Additive White Gaussian Noise (AWGN) and Impulse Noise (IN). Many methods first attempt to remove IN but it might collapse the texture of the image. In this paper, we propose a new learning-based method using convolutional neural network (CNN) for removing mixed gaussian-impulse noise. Since our denoising network can remove various level of mixed noise, neither the preprocessing for removing IN nor noise-level estimation is necessary.​

2 部分代码

% Use this code when trainingtraining_image_list = {};for a=1000:2:1200        training_image_list = [training_image_list,['image/train/train_image_gray', num2str(a) ,'.png']];    endpatch_size = 33;train_data = zeros(patch_size, patch_size, 1000000, 'single');train_label = zeros(patch_size, patch_size, 1000000, 'single');num_patches = 0;% Make training datafor image_index = 1 : length(training_image_list)    fprintf('Reading %s\n', training_image_list{image_index});        for impulse_loop =1        for impulse_noise_rate = 0:5:45             for gaussian_noise_sigma = 0:10:50                        img_original = im2single(imread(training_image_list{image_index}));            img_original = padarray(img_original, ceil(size(img_original)/patch_size)*patch_size-size(img_original) ,'symmetric','post');                        % AWGN            img_noisy = img_original + (gaussian_noise_sigma / 255) * randn(size(img_original));                        % RVIN            img_noise_position = rand(size(img_original)) < impulse_noise_rate / 100;            img_noisy(repmat(img_noise_position,1,1)) = rand(1, sum(img_noise_position(:)));                        if impulse_noise_rate>0                if gaussian_noise_sigma >0                    if rand<0.15                        % SPIN                        img_noise_position = rand(size(img_original)) < randi(30) / 100;                        img_noisy(repmat(img_noise_position,1,1)) = rand(1, sum(img_noise_position(:)))>0.5;                    end                end            end                                    tmp_data = im2col(img_noisy, [patch_size, patch_size], 'distinct');            tmp_data = reshape(tmp_data, patch_size, patch_size, []);            tmp_label = im2col(img_original, [patch_size, patch_size], 'distinct');            tmp_label = reshape(tmp_label, patch_size, patch_size, []);                        train_data(:, :, num_patches + 1 : num_patches + size(tmp_data, 3)) = tmp_data;            train_label(:, :, num_patches + 1 : num_patches + size(tmp_label, 3)) = tmp_label;                        num_patches = num_patches + size(tmp_data, 3);            end        end    endendtrain_data = train_data(:, :, 1 : num_patches);train_label = train_label(:, :, 1 : num_patches);% reshape to MxNx1xCtrain_data = reshape(train_data, patch_size, patch_size, 1, []);train_label = reshape(train_label, patch_size, patch_size, 1, []);% save('mixed_data.mat','train_data','train_label');% clear allfprintf('Complete.\n');

3 仿真结果

4 参考文献

Ryo Abiko, and Masaaki Ikehara. "Blind Denoising of Mixed Gaussian-impulse Noise by Single CNN." ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值