严加安院士:数学如诗,境界为上

本文探讨了数学与诗歌之间的共通之处,指出二者都源自自然和社会,追求和谐与简洁,并强调直觉、激情和灵感在创作中的重要作用。文章还列举了多个数学领域的杰出成就作为例证。

  王国维在《人间词话》中提出:“词以境界为最上。有境界自成高格,自有名句。”他说:“有造境,有写境,此‘理想’与‘写实’二派之所由分。”按我理解,“造境”是以意念和想象为境,“写境”是描写现实的景物。王国维还把艺术家分为“写实家”和“理想家”,并认为这两者是相通的。他还写道:“诗人对宇宙人生,须入乎其内,又须出乎其外。入乎其内,故能写之。出乎其外,故能观之。入乎其内,故有生气。出乎其外,故有高致。”

  数学家维纳说:“数学是一门精美的艺术”。我认为,数学如同诗歌,评价一项数学成就,也应以境界为上。数学上也有“造境”与“写境”之分,前者是“创造理论”,后者是“解决难题”。数学家也有“写实家”和“理想家”之分,前者是“入乎其内”,侧重应用数学;后者是“出乎其外”,侧重纯粹数学,但两者是互通的。

  数学与诗歌有许多共性,下面归纳为八点。

  第一,数学和诗歌的源泉都是自然和社会。数学史家克莱因认为:“对自然的深入研究是数学发现最丰富的源泉。”

  第二,数学和诗歌都追求和谐与简洁。诗歌是力图通过简洁的语言和韵律,抒发诗人的情怀,表达深邃的哲理。数学的和谐是不言而喻的。至于数学的简洁,一方面数学结果是通过简明的命题或定理的形式来表述的;另一方面,在研究过程中,数学家追求在较少条件下推出尽可能广泛而深刻的结论,或者力图简化已有结果的证明。

  第三,数学中的“对偶”与诗词中的“对仗”是异曲同工。诗词中的“对仗”能使意境更加优美,抒情更加感人,哲理更加深邃。数学中的“对偶”使得数学理论变得更加深刻,更加优美。数学中的“对偶”不只是数学的结构和框架,而且是一种思维方式,也是重要的证明工具和技巧。

  第四,数学和诗歌的创作都需要直觉和想象力。所谓直觉,就是没有经过意识推理而对某事物产生的理解和判断。当然,任何科学和艺术的创作都需要直觉和想象力,但数学和诗歌更为突出。例如,李白《望庐山瀑布》中诗句“飞流直下三千尺,疑是银河落九天”就极富直觉和想象。这种直觉和想象是源于诗人的形象思维。数学史家克莱因说:“在预测能被证明的内容时,和构思证明的方法时一样,数学家们利用高度的直觉和想象。”法国著名数学家庞加莱认为:“我们靠逻辑来证明,但要靠直觉来发明。”这里的“发明”就是指提出问题和构思证明的方法。

  第五,诗歌创作和数学研究都需要激情和灵感。诗人有了激情才能把自己的感悟加深和放大,把内心情感宣泄出来,作品才能打动人和感染人。对数学研究来说,激情来自于探求未知真理的好奇和对美的追求。灵感也叫顿悟,它是一种近乎无意识或潜意识的非逻辑式的创造性思维活动。灵感是对某一问题长期思考以后突然产生的思想火花,有时产生于全神贯注思考问题之际,有时却是在不经意间或意识蒙胧之中。灵感有时也来源于对不同现象的类比和联想。

  第六,数学研究和诗歌创作都需要有美感。法国数学家庞加莱在《数学创造》一文中形象地描述了数学美感在数学创造过程中的作用,他说:“各种数学概念在潜意识里碰撞组合,数学直觉从中筛选有意义的组合,进而进行创造。……潜意识做出选择时,所用的标准便是数学的美感,数和形的和谐感,几何学的雅致感。”数学史家克莱因认为:“进行数学创造的最主要驱动力是对美的追求。”

  第七,“创新”是数学和诗歌的共同美学准则(即评价标准)。艺术家把“创新”叫作艺术风格。例如,李白的诗“豪迈奔放,飘逸若仙”,是浪漫主义风格;杜甫的诗则“深沉蕴蓄,抑扬曲折”,是现实主义风格。对数学研究而言,创新必须是在一定科学范围内有比较重要的意义。

  第八,数学和诗歌的另一共同美学准则就是《人间词话》中所说的“境界为上”。数学的境界包括:1)大道至简,大美天成;2)简洁、和谐、对称、雅致;3)颠覆性的创新;4)交叉、融合、统一。

  下面举几个高境界的数学例子。首先是两个美妙的数学公式。一是欧拉公式eiπ+1=0,它把数学里面最基本的几个要素全都整合在一块了,其中1是自然数的单位,0是正负数的分界点,e是自然对数的底,π是圆周率,i是虚数单位。二是欧拉公式V+F-E=2,公式表明:任何一个简单凸多面体,它的顶点数V加上面数F,减去棱数E必定等于2。这两个欧拉公式堪称“大道至简、大美天成”的数学公式。

数论中的三个著名猜想:“哥德巴赫猜想”(任何大于2的偶数可以表为两个素数之和)、“孪生数猜想”(存在无穷多对素数其差等于2)和“黎曼猜想”(黎曼ζ函数所有非平凡零点都位于复平面中实部为1/2的直线上),更是高境界数学的例子,尽管它们都还没有得到证明。又如庞加莱猜想、费尔马大定理、四色定理、伽罗瓦群论、黎曼几何、哥德尔不完备定理、伊藤清的随机分析、香农信息论等,这些都是属于“简洁、和谐、对称、雅致”高境界数学的例子。

  20世纪50、60年代,格罗滕迪克对代数几何进行了彻底的革命,建立了“概形理论”,堪称一项颠覆性的创新。他因此于1966年获得菲尔兹奖。在概形理论基础上,数学家们取得了一系列杰出成就:1973年,德利涅证明了韦伊猜想(1978年获菲尔兹奖); 1983年,法尔廷斯证明了莫德尔猜想(1986年获菲尔兹奖);1995年,怀尔斯证明了费马大定理(1996年获菲尔兹特别奖)。

关于“交叉、融合、统一”这一数学境界,我举两个例子。其一是Atiyah-Singer指标定理:紧流形上的椭圆偏微分算子的解析指标(与解空间的维度相关)等于拓扑指标(决定于流形的拓扑性状)。其二是朗兰兹纲领,它是将数学中某些表面上毫不相干的领域(数论、代数几何与约化群表示理论)建立一种本质联系的构想。纲领是由朗兰兹在1967年给韦伊的一封信件中提出的。法籍越南数学家吴宝珠因证明朗兰兹纲领基本引理获得了2010年菲尔兹奖,朗兰兹本人获2018年度阿贝尔奖(编者注:为纪念挪威数学家尼尔斯·亨利克·阿贝尔设立的数学奖,每年颁发一次)。

  我本人是研究概率论与随机分析的。我曾试图用诗歌来解析我的专业内涵,写过一首“悟道诗”:

  随机非随意,概率破玄机。
  无序隐有序,统计解迷离。

  下面是我的另一首有关概率论的科学诗《随机与概率》,希望能引起大家对概率论的关注和兴趣。

  随机与概率
  熙熙人群朋友不期而遇,茫茫宇宙陨星意外撞击。
  随机事件发生并非随意,概率破解其中奥秘玄机。
  情境重复催生稀有事件,历史长河沉淀自然奇迹。
  同班同学常有生日相同,彩民两次中奖并不神奇。
  抵押贷款房产汽车按揭,精巧设计需要借助概率。
  保费计算基于概率模型,期权定价有赖随机分析。
  概率技巧有助破解密码,人工智能需用概率逻辑。
  日常生活常遇概率问题,学点概率知识终身受益。

  转载自:https://tech.china.com/article/20211223/20211223962428.html

【语音分离】基于平均谐波结构建模的无监督单声道音乐声源分离(Matlab代码实现)内容概要:本文介绍了基于平均谐波结构建模的无监督单声道音乐声源分离方法,并提供了相应的Matlab代码实现。该方法通过对音乐信号中的谐波结构进行建模,利用音源间的频率特征差异,实现对混合音频中不同乐器或人声成分的有效分离。整个过程无需标注数据,属于无监督学习范畴,适用于单通道录音场景下的语音与音乐分离任务。文中强调了算法的可复现性,并附带完整的仿真资源链接,便于读者学习与验证。; 适合人群:具备一定信号处理基础和Matlab编程能力的高校学生、科研人员及从事音频处理、语音识别等相关领域的工程师;尤其适合希望深入理解声源分离原理并进行算法仿真实践的研究者。; 使用场景及目标:①用于音乐音频中人声与伴奏的分离,或不同乐器之间的分离;②支持无监督条件下的语音处理研究,推动盲源分离技术的发展;③作为学术论文复现、课程项目开发或科研原型验证的技术参考。; 阅读建议:建议读者结合提供的Matlab代码与网盘资料同步运行调试,重点关注谐波建模与频谱分解的实现细节,同时可扩展学习盲源分离中的其他方法如独立成分分析(ICA)或非负矩阵分解(NMF),以加深对音频信号分离机制的理解。
内容概要:本文系统介绍了新能源汽车领域智能底盘技术的发展背景、演进历程、核心技术架构及创新形态。文章指出智能底盘作为智能汽车的核心执行层,通过线控化(X-By-Wire)和域控化实现驱动、制动、转向、悬架的精准主动控制,支撑高阶智能驾驶落地。技术发展历经机械、机电混合到智能三个阶段,当前以线控转向、线控制动、域控制器等为核心,并辅以传感器、车规级芯片、功能安全等配套技术。文中还重点探讨了“智能滑板底盘”这一创新形态,强调其高度集成化、模块化优势及其在成本、灵活性、空间利用等方面的潜力。最后通过“2025智能底盘先锋计划”的实车测试案例,展示了智能底盘在真实场景中的安全与性能表现,推动技术从研发走向市场验证。; 适合人群:汽车电子工程师、智能汽车研发人员、新能源汽车领域技术人员及对智能底盘技术感兴趣的从业者;具备一定汽车工程或控制系统基础知识的专业人士。; 使用场景及目标:①深入了解智能底盘的技术演进路径与系统架构;②掌握线控技术、域控制器、滑板底盘等关键技术原理与应用场景;③为智能汽车底盘研发、系统集成与技术创新提供理论支持与实践参考。; 阅读建议:建议结合实际车型和技术标准进行延伸学习,关注政策导向与行业测试动态,注重理论与实车验证相结合,全面理解智能底盘从技术构想到商业化落地的全过程。
【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)》的技术资源,重点围绕电力系统中连锁故障的传播路径展开研究,提出了一种N-k多阶段双层优化模型,并结合故障场景筛选方法,用于提升电力系统在复杂故障条件下的安全性与鲁棒性。该模型通过Matlab代码实现,具备较强的工程应用价值和学术参考意义,适用于电力系统风险评估、脆弱性分析及预防控制策略设计等场景。文中还列举了大量相关的科研技术支持方向,涵盖智能优化算法、机器学习、路径规划、信号处理、电力系统管理等多个领域,展示了广泛的仿真与复现能力。; 适合人群:具备电力系统、自动化、电气工程等相关背景,熟悉Matlab编程,有一定科研基础的研究生、高校教师及工程技术人员。; 使用场景及目标:①用于电力系统连锁故障建模与风险评估研究;②支撑高水平论文(如EI/SCI)的模型复现与算法验证;③为电网安全分析、故障传播防控提供优化决策工具;④结合YALMIP等工具进行数学规划求解,提升科研效率。; 阅读建议:建议读者结合提供的网盘资源,下载完整代码与案例进行实践操作,重点关注双层优化结构与场景筛选逻辑的设计思路,同时可参考文档中提及的其他复现案例拓展研究视野。
严加安测度论讲义》是一本讲探讨安全性和度量的学术讲义。该讲义的主旨是通过严格的方法和分析来实现安全度量,以便评估信息安全系统的安全性。下面将从内容概述、重点论述以及影响等方面回答该问题。 首先,讲义的内容涵盖了对安全性和度量的全面讨论。它介绍了安全度量的基本概念、方法和工具,并提供了实施和应用这些方法的详细指导。通过深入研究不同的安全领域,包括网络安全、信息安全和物理安全等,讲义提供了一种系统的方法来衡量和度量系统的安全性。 其次,讲义的重点讨论了如何通过严格的方法来评估信息安全系统的安全性。它介绍了各种度量方法,如风险评估、威胁建模和漏洞分析等。同时,它还介绍了一些度量标准和指标,以帮助分析员确定系统的脆弱性和可信度。 最后,该讲义对信息安全领域产生了积极的影响。它提供了一种全面且系统的方法来评估系统的安全性,帮助决策者制定有效的安全策略和措施。讲义还提供了一些实用的工具和技术,可以帮助研究人员和从业人员更好地理解和应对信息安全挑战。 综上所述,《严加安测度论讲义》是一本对安全性和度量进行深入探讨的学术讲义。它提供了一套系统的方法来评估和度量系统的安全性,对信息安全领域的理论和实践产生了积极的影响。阅读该讲义可以帮助读者提高其对信息安全和度量的理解,为信息安全系统的优化和改进提供有价值的工具和指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值