2024_ICLR_Honorable mentions_META CONTINUAL LEARNING REVISITED: IMPLICITLY ENHANCING ONLINE HESSIAN

文章核心总结与翻译

一、主要内容

文章聚焦持续学习(CL)中的灾难性遗忘问题,围绕Hessian矩阵近似展开研究。正则化方法通过固定Hessian估计保留旧任务知识,但缺乏时效性;元持续学习(Meta-CL)通过超梯度隐式在线更新Hessian,却因记忆缓冲随机采样导致方差过高。为此,作者提出方差减少元持续学习(VR-MCL),结合动量方差减少技术,在保留Meta-CL时效性优势的同时降低方差,实现更精准的Hessian近似。通过在Seq-CIFAR10、Seq-CIFAR100和Seq-TinyImageNet数据集上的实验,VR-MCL在在线、类别增量、不平衡等多种持续学习场景中,均优于现有SOTA方法。

二、创新点

  1. 建立Meta-CL与正则化方法的关联,首次从Hessian矩阵近似视角重新诠释Meta-CL,揭示其通过超梯度隐式利用二阶信息的本质。
  2. 提出VR-MCL算法,将动量基方差减少技术融入Meta-CL,有效降低超梯度方差,避免模型过度更新。
  3. 从理论上证明VR-MCL的方差减少机制等价于对隐式估计Hessian施加惩罚项,并给出√T阶遗憾界,验证其优化有效性。
  4. 设计Mask-VR训练策略,扩大保留logits范围,协同方差减少技术进一步提升模型在类别增量场景的性能。

翻译部分(Markdown格式)

Abstract

正则化方法迄今为止一直是持续

### MAI_ICLR in IT Context The abbreviation **MAI_ICLR** likely refers to the International Conference on Learning Representations (ICLR), a significant conference within the field of machine learning and deep learning research[^1]. ICLR focuses on fostering discussions about various aspects of learning representations, including algorithms, theory, applications, and more. #### Related Papers One notable paper that aligns with themes often presented at ICLR involves advancements in word sense disambiguation using decision trees constructed from bigrams. This approach has been shown effective as an accurate predictor of word senses[^3]. ```python # Example Python code snippet demonstrating how one might implement part-of-speech tagging, # which can be relevant when discussing natural language processing techniques like those found in NAACL papers. import nltk from nltk.corpus import brown def pos_tagging_example(): sentences = brown.tagged_sents(categories='news') size = int(len(sentences) * 0.1) train_set, test_set = sentences[size:], sentences[:size] t0 = nltk.DefaultTagger('NN') t1 = nltk.UnigramTagger(train_set, backoff=t0) print(t1.evaluate(test_set)) pos_tagging_example() ``` #### Conferences Conferences such as ICLR play pivotal roles in disseminating cutting-edge knowledge across artificial intelligence disciplines. Researchers submit their latest findings concerning neural networks, reinforcement learning, generative models, among others, contributing significantly towards advancing technology frontiers. #### Implementations For classic algorithms frequently referenced during these events—especially ones pertaining to clustering or classification tasks—it's common practice for developers worldwide to create open-source libraries implementing said methodologies efficiently. Popular programming languages like MATLAB and Python host numerous packages dedicated to this purpose due to widespread interest and utility derived therefrom[^2].
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值