基本概念
在支持多任务的操作系统中,修改一块内存区域的数据需要“读取-修改-写入”三个步骤。然而同一内存区域的数据可能同时被多个任务访问,如果在修改数据的过程中被其他任务打断,就会造成该操作的执行结果无法预知。
使用开关中断的方法固然可以保证多任务执行结果符合预期,但这种方法显然会影响系统性能。
ARMv6
架构引入了LDREX
和STREX
指令,以支持对共享存储器更缜密的非阻塞同步。由此实现的原子操作能确保对同一数据的“读取-修改-写入”操作在它的执行期间不会被打断,即操作的原子性。
有多个任务对同一个内存数据进行加减或交换操作时,使用原子操作保证结果的可预知性。
看过自旋锁篇的应该对LDREX和STREX指令不陌生的,自旋锁的本质就是对某个变量的原子操作,而且一定要通过汇编代码实现,也就是说LDREX
和STREX
指令保证了原子操作的底层实现.
回顾下自旋锁申请和释放锁的汇编代码.
ArchSpinLock 申请锁代码
FUNCTION(ArchSpinLock) @死守,非要拿到锁
mov r1, #1 @r1=1
1: @循环的作用,因SEV是广播事件.不一定lock->rawLock的值已经改变了
ldrex r2, [r0] @r0 = &lock->rawLock, 即 r2 = lock->rawLock
cmp r2, #0 @r2和0比较
wfene @不相等时,说明资源被占用,CPU核进入睡眠状态
strexeq r2, r1, [r0]@此时CPU被重新唤醒,尝试令lock->rawLock=1,成功写入则r2=0
cmpeq r2, #0 @再来比较r2是否等于0,如果相等则获取到了锁
bne 1b @如果不相等,继续进入循环
dmb @用DMB指令来隔离,以保证缓冲中的数据已经落实到RAM中
bx lr @此时是一定拿到锁了,跳回调用ArchSpinLock函数
ArchSpinUnlock 释放锁代码
FUNCTION(ArchSpinUnlock) @释放锁
mov r1, #0 @r1=0
dmb @数据存储隔离,以保证缓冲中的数据已经落实到RAM中
str r1, [r0] @令lock->rawLock = 0
dsb @数据同步隔离
sev @给各CPU广播事件,唤醒沉睡的CPU们
bx lr @跳回调用ArchSpinLock函数
运作机制
鸿蒙通过对ARMv6
架构中的LDREX
和STREX
进行封装,向用户提供了一套原子操作接口。
-
LDREX Rx, [Ry]
读取内存中的值,并标记对该段内存为独占访问:- 读取寄存器Ry指向的4字节内存数据,保存到Rx寄存器中。
- 对Ry指向的内存区域添加独占访问标记。
-
STREX Rf, Rx, [Ry]
检查内存是否有独占访问标记,如果有则更新内存值并清空标记,否则不更新内存:- 有独占访问标记
- 将寄存器Rx中的值更新到寄存器Ry指向的内存。
- 标志寄存器Rf置为0。
- 有独占访问标记