题目:
Given n
nodes labeled from 0
to n
- 1
and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3 | | 1 --- 2 4
Given n = 5
and edges
= [[0, 1], [1, 2], [3, 4]]
, return 2
.
Example 2:
0 4 | | 1 --- 2 --- 3
Given n = 5
and edges
= [[0, 1], [1, 2], [2, 3], [3, 4]]
, return 1
.
Note:
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0,
1]
is the same as [1, 0]
and thus will not appear together in edges
.
思路:
一道难度适中的Union-Find题目。这类题目也有套路:首先为每个顶点初始化一个单独的集合;然后遍历,每次遇到一个边,就把边的两个顶点所属的集合进行合并,同时总的连通图数量减1。注意判断两个顶点是否属于同一个集合的经典代码,个人感觉应该背下来^_^。
这道题目用BFS和DFS也可以求解,但代码要相对复杂一些。
代码:
class Solution {
public:
int countComponents(int n, vector<pair<int, int>>& edges) {
vector<int> parents(n);
for (int i = 0; i < n; ++i) {
parents[i] = i;
}
int ret = n;
for (int i = 0; i < edges.size(); ++i) {
int par1 = edges[i].first, par2 = edges[i].second;
while (par1 != parents[par1]) {
par1 = parents[par1];
}
while (par2 != parents[par2]) {
par2 = parents[par2];
}
if (par1 != par2) {
parents[par2] = par1;
--ret;
}
}
return ret;
}
};