题目:
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
思路:
相比于上一道题目,这道题目的难度确实增加了不少,当然解决方法也有不少。这里我给出一道在网上看到的非常巧妙的方法:我们分别在root的左右子树中搜索p和q。如果在左子树中搜索到了p或者q,就将其结点赋给left;如果在右子树中搜索到了p或者q,就将其结点赋给right。而如果没有搜索到,则返回NULL。这样如果left和right都不为NULL,则说明p和q必然位于不同的子树上,则root就是最低公共祖先;否则left和right中那个不为NULL的就是最低公共祖先(想一想是为什么呢?^_^答案是我们在递归的时候,返回的结点要么是p,要么是q,要么就是已经确定的p和q的最低公共祖先,请参考函数中的四个返回点进一步理解。)
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root || !p || !q) {
return NULL;
}
if (root == p || root == q) {
return root;
}
TreeNode *left = lowestCommonAncestor(root->left, p, q);
TreeNode *right = lowestCommonAncestor(root->right, p, q);
if (left && right) {
return root;
}
return left ? left : right;
}
};