题目:
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
思路:
由于是二叉搜索树,所以左子树的所有结点的值都要比根结点小,右子树的所有结点的值都要比根结点大。利用这一特性,我们可以递归实现求解最低公共祖先的算法:假设p的结点值小于q,那么如果p和q分别位于root的左右子树上,则root必然就是p和q的最低公共祖先;否则如果p和q的都位于root的右子树上,那么p和q的最低公共祖先必然位于root的右子树上;否则p和q的最低公共祖先必然位于root的左子树上。后两种情况可以通过递归求解。
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
TreeNode *smaller = p->val < q->val ? p : q;
TreeNode *larger = p->val < q->val ? q : p;
if (root->val >= smaller->val && root->val <= larger->val) {
return root;
}
else if (root->val < smaller->val) {
return lowestCommonAncestor(root->right, smaller, larger);
}
else {
return lowestCommonAncestor(root->left, smaller, larger);
}
}
};