ICME2014-MULTI-VIEW GAIT RECOGNITION WITH INCOMPLETE TRAINING DATA

主要思想:视角转换模型VTM基础上,考虑了如果缺少部分训练样本(比如视角1中存在的个体样本,在视角2中缺少了),提出了视角特征恢复模型VFRM,然后使用已有的VTM去识别多视角步态。
    VFRM使用了同一视角下的K近邻样本来恢复,这个K近邻指的是测地距离(使用Dijkstra方法计算距离)


1.Introduction
仍然是worapan提到的3种分类方法实现多视角步态识别。本文属于VTM这一类,指出现有缺点,本文主要特色就是考虑缺失样本情况下的多视角
2.VTM Based GAIT RECOGNITION
2.1Gait Feature Extraction  :
    GEI+LDA
2.2View transformation model construction
2.3 Gait Similarity Measurement


3.VFRM BASED Gait Recognition with imcomplete training data
3.1  Geodesic distances based K-nearest-neighbor
   K近邻,距离越近,权值越重
3.2 Pedestrians neighborhood measurement
     距离的计算: 视角相差越小,权值越大。      Dij=  sum(sum(w*dij [Vi,Vj]))遍历各个视角,任意两个视角下 i,j的距离。dij非零。
      【PS:如果这种情况,任意两个视角下,i样本与j样本不同时存在,则Dij不能计算出来,这个时候怎么办?】
4.EXPERIMENTS
5. CONCLUSIONS
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值