10、强化学习高级技巧与超参数优化

强化学习高级技巧与超参数优化

1. 策略客户端的使用

首先,我们来看一个策略客户端的代码示例:

import gym
from ray.rllib.env.policy_client import PolicyClient
from maze_gym_env import GymEnvironment

if __name__ == "__main__":
    env = GymEnvironment()
    client = PolicyClient("http://localhost:9900", inference_mode="remote")  
    obs = env.reset()
    episode_id = client.start_episode(training_enabled=True)  
    while True:
        action = client.get_action(episode_id, obs)  
        obs, reward, done, info = env.step(action)
        client.log_returns(episode_id, reward, info=info)  
        if done:
            client.end_episode(episode_id, obs)  
            exit(0)  

上述代码的执行步骤如下:
1. 启动一个策略客户端,以远程推理模式连接到服务器地址。
2. 告知服务器开始一个新的回合。 <

内容概要:本文围绕VMware虚拟化环境在毕业设计中的应用,重点探讨其在网络安全AI模型训练两大领域的实践价值。通过搭建高度隔离、可复现的虚拟化环境,解决传统物理机实验中存在的环境配置复杂、攻击场景难还原、GPU资源难以高效利用等问题。文章详细介绍了嵌套虚拟化、GPU直通(passthrough)、虚拟防火墙等核心技术,并结合具体场景提供实战操作流程代码示例,包括SQL注入攻防实验中基于vSwitch端口镜像的流量捕获,以及PyTorch分布式训练中通过GPU直通实现接近物理机性能的模型训练效果。同时展望了智能化实验编排、边缘虚拟化和绿色计算等未来发展方向。; 适合人群:计算机相关专业本科高年级学生或研究生,具备一定虚拟化基础、网络安全或人工智能背景,正在进行或计划开展相关方向毕业设计的研究者;; 使用场景及目标:①构建可控的网络安全实验环境,实现攻击流量精准捕获WAF防护验证;②在虚拟机中高效开展AI模型训练,充分利用GPU资源并评估性能损耗;③掌握VMware ESXi命令行vSphere平台协同配置的关键技能; 阅读建议:建议读者结合VMware实验平台动手实践文中提供的esxcli命令网络拓扑配置,重点关注GPU直通的硬件前提条件端口镜像的混杂模式设置,同时可延伸探索自动化脚本编写能效优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值