机器学习————KNN算法

本文详细介绍了KNN算法的基本概念、工作流程、距离计算方法,展示了如何用KNN实现鸢尾花分类,并探讨了其优点(如简单实现、多分类和对异常值不敏感)及缺点(如计算复杂度高、数据相关性问题)。

一、KNN算法介绍

1.1 KNN算法概述

KNN(K-Nearest Neighbor)算法是机器学习算法中最基础、最简单的算法之一,是一种分类回归的统计方法,是监督学习。KNN通过测量不同特征值之间的距离来进行分类。所谓k近邻,就是k个最近的邻居的意思,说的是每个样本类别都可以用它最接近的k个邻居的类别来代表。 就比如:判断一个人的人品好坏,只需要观察与他来往最密切的几个人的人品好坏就可以得出,即“近朱者赤,近墨者黑"。

举个例子:

图中绿色的点是我们要预测的那个点,假设K=3。那么KNN算法就会找到与它距离最近的三个点,看看哪种类别多一些,例子中蓝色三角形有两个,红色圆有一个,那么新来的绿色点就归类到蓝三角了。

1.2 KNN算法的一般流程

1、收集数据:可以使用任何方法。
2、准备数据:距离计算所需要的数值,最好是结构化的数据格式。
3、分析数据:可以使用任何方法。
4、测试算法:计算错误率。
5、使用算法
    5.1. 计算预测数据与训练数据之间的距离
    5.2. 将距离进行递增排序
    5.3. 选择距离最小的前K个数据
    5.4. 确定前K个数据的类别,及其出现频率
    5.5. 返回前K个数据中频率最高的类别(预测结果)

1.3 KNN算法的距离计算

KNN算法中对于距离的计算有好几种度量方式,比如欧式距离、曼哈顿距离、切比雪夫距离等等,最常用的就是欧式距离。

欧式距离计算公式

\sqrt{\sum_{i=1}^{n}\left ( x_{i}-y_{i} \right )^{2}}

1.4 KNN算法的K值选择

K值的大小对算法的影响:

K值太大,会导致预测标签比较稳定,可能过平滑,容易欠拟合

K值太小,会导致预测的标签比较容易受到样本的影响,容易过拟合

所以对于K值的选取,我们通常使用交叉验证来验证,交叉验证:将样本数据按照一定比例,拆分出训练用的数据和验证用的数据,比如6:4拆分出部分训练数据和验证数据,从选取一个较小的K值开始,不断增加K的值,然后计算验证集合的方差,最终找到一

### KNN算法机器学习中的实现与应用 #### 一、KNN算法简介 K近邻(K-Nearest Neighbor, KNN)是一种基本分类与回归方法。该算法的核心思想在于通过计算待测样本与训练集中各个样本的距离,选取距离最小的前K个邻居,并依据这些邻居的信息来进行决策。对于分类问题而言,则是根据多数表决原则决定新实例所属类别;而对于回归问题来说,则通常采用这K个最接近的数据点的目标属性平均值作为预测结果。 #### 二、R语言下的具体实践案例 针对鸢尾花数据集的应用展示了如何利用基础函数完成整个流程而无需依赖额外包的支持[^2]。在这个例子中,通过对不同特征维度间欧氏距离或其他度量方式的选择实现了对未知样本的有效识别。这种做法不仅有助于理解原理本身,同时也锻炼了编程技巧以及解决实际问题的能力。 ```r # 加载必要的库并读入数据 library(ggplot2) data(iris) head(iris) # 数据预处理... set.seed(1234) trainIndex <- sample(seq_len(nrow(iris)), size = floor(.7 * nrow(iris))) trainingData <- iris[trainIndex, ] testingData <- iris[-trainIndex, ] # 定义knn函数用于后续调用 knnPredict <- function(trainSet, testInstance, labels, k){ distances <- sqrt(rowSums((t(t(trainSet[,1:4]) - as.numeric(testInstance)))^2)) sortedDistIndices <- order(distances)[1:k] classCounts <- table(labels[sortedDistIndices]) return(names(which.max(classCounts))) } predictions <- sapply(as.matrix(testingData[,1:4]), knnPredict, trainSet=as.matrix(trainingData[,1:4]), labels=trainingData$Species,k=3L) confusionMatrix <- table(predictions,factor(testingData$Species)) print(confusionMatrix) ``` 上述代码片段演示了一个完整的基于自定义逻辑而非第三方工具包构建KNN模型的过程,包括但不限于数据分割、相似性测量及最终评估等方面的工作。 #### 三、应用场景探讨 尽管存在诸如计算复杂度较高等局限之处,但在某些特定条件下依然能够展现出独特价值: - **低维空间**:当输入变量数量较少时,性能表现良好; - **多模态分布**:可以很好地适应具有多个峰值的概率密度函数所描述的现象; - **快速原型开发**:由于易于理解和编码特性,在初期探索阶段可作为一种高效手段迅速验证想法可行性[^3]。 综上所述,虽然与其他更先进的技术相比可能显得不够先进,但凭借其实现简便性和灵活性依旧占据着不可替代的地位。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值