python并发编程(二)

 一、 multiprocessing模块介绍

 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。Python提供了multiprocessing。
    multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。

  multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

    需要再次强调的一点是:与线程不同,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内。

二、Process类的介绍

  • 创建进程的类
 #由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)
Process([group [, target [, name [, args [, kwargs]]]]]) 

#group参数未使用,值始终为None

#target表示调用对象,即子进程要执行的任务
 
#args表示调用对象的位置参数元组,args=(1,2,'pmj',)

#kwargs表示调用对象的字典,kwargs={'name':'pmj','age':21}

#name为子进程的名称
  • 方法介绍
p.start() #启动进程,并调用该子进程中的p.run() 
p.run() #进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法  

p.terminate() #强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
p.is_alive() #如果p仍然运行,返回True

p.join([timeout]) #主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间 

 

  • 属性介绍
p.daemon    #默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
p.name   #进程的名称
p.pid    #进程的pid
p.exitcode    #进程在运行时为None、如果为–N,表示被信号N结束(了解即可)

 

三、Process类的使用(注意:在windows中Process()必须放到# if __name__ == '__main__':下

  • 方法一
import multiprocessing 

def cube(num): 
    print("Cube: {}".format(num * num * num)) 

def square(num): 
    print("Square: {}".format(num * num)) 

if __name__ == "__main__": 
    # creating processes 
    p1 = multiprocessing.Process(target=square, args=(10, )) 
    p2 = multiprocessing.Process(target=cube, args=(10, )) 

    # starting process 1&2
    p1.start() 
    p2.start() 

    # wait until process 1&2 is finished 
    p1.join() 
    p2.join() 

    # both processes finished 
    print("Done!")

运行结果

  • 方法二
import time
import random
from multiprocessing import Process


class Piao(Process):
    def __init__(self,name):
        super().__init__()
        self.name=name
    def run(self):
        print('%s piaoing' %self.name)

        time.sleep(random.randrange(1,5))
        print('%s piao end' %self.name)
if __name__ == '__main__':

    p1=Piao('xiaoming')
    p2=Piao('liming')
    p3=Piao('wangwu')
    p4=Piao('zhangsan')

    p1.start() #start会自动调用run
    p2.start()
    p3.start()
    p4.start()
    print('主线程')

运行结果

  • 进程间的内存是相互隔离的
from multiprocessing import Process
n=100
def work():
    global n
    n=0
    print('子进程内: ',n)


if __name__ == '__main__':
    p=Process(target=work)
    p.start()
    print('主进程内: ',n)

运行结果

 

  • Process对象的join方法
from multiprocessing import Process
import time
import random

class Piao(Process):
    def __init__(self,name):
        self.name=name
        super().__init__()
    def run(self):
        print('%s is piaoing' %self.name)
        time.sleep(random.randrange(1,3))
        print('%s is piao end' %self.name)


if __name__ == '__main__':

    p=Piao('pmj')
    p.start()
    p.join(5) #等待p停止,等5秒就不再等了
    print('开始')

运行结果

from multiprocessing import Process
import time
import random
def piao(name):
    print('%s is piaoing' %name)
    time.sleep(random.randint(1,3))
    print('%s is piao end' %name)

if __name__ == '__main__':

    p1=Process(target=piao,args=('ZS',))
    p2=Process(target=piao,args=('LS',))
    p3=Process(target=piao,args=('ZL',))
    p4=Process(target=piao,args=('MJ',))

    p_l=[p1,p2,p3,p4]

    for p in p_l:
        p.start()

    for p in p_l:
        p.join()

运行结果

有的同学会有疑问:既然join是等待进程结束,那么我像上面那样写,进程不就又变成串行的了吗? 当然不是了,必须明确:p.join()是让谁等? 很明显p.join()是让主线程等待p的结束,卡住的是主线程而绝非进程p

详细解析如下: 进程只要start就会在开始运行了,所以p1-p4.start()时,系统中已经有四个并发的进程了 而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键 join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等#p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待 所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间。

四、僵尸进程与孤儿进程(了解)

僵尸进程(有害):在每个进程退出的时候,内核释放该进程所有的资源,包括打开的文件,占用的内存等。 但是仍然为其保留一定的信息(包括进程号the process ID,退出状态the termination status of the process,运行时间the amount of CPU time taken by the process等)。直到父进程通过wait / waitpid来取时才释放。 但这样就导致了问题,如果进程不调用wait / waitpid的话, 那么保留的那段信息就不会释放,其进程号就会一直被占用,但是系统所能使用的进程号是有限的,如果大量的产生僵死进程,将因为没有可用的进程号而导致系统不能产生新的进程. 此即为僵尸进程的危害,应当避免。

孤儿进程(无害):一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。

五、守护进程

主进程创建守护进程:

  其一:守护进程会在主进程代码执行结束后就终止

  其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

from multiprocessing import Process
from threading import Thread
import time


def foo():
    print(123)
    time.sleep(2)
    print("end123")


def bar():
    print(456)
    time.sleep(3)
    print("end456")


if __name__ == '__main__':

    p1 = Process(target=foo)
    p2 = Process(target=bar)

    p1.daemon = True  #一定要在p1.start()前设置,设置p1为守护进程,禁止p1创建子进程,并且父进程代码执行结束,p1即终止运行
    p1.start()
    p2.start()
    time.sleep(2)
    print("main-------")  # 打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止

运行结果

六、进程同步(锁)

进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理。

#并发运行,效率高,但竞争同一打印终端,带来了打印错乱
from multiprocessing import Process
import os,time
def work():
    print('%s is running' %os.getpid())
    time.sleep(2)
    print('%s is done' %os.getpid())

if __name__ == '__main__':
    for i in range(3):
        p=Process(target=work)
        p.start()

运行结果

from multiprocessing import Process,Lock
import os,time
def work(lock):
    lock.acquire() #加锁
    print('%s is running' %os.getpid())
    time.sleep(2)
    print('%s is done' %os.getpid())
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    for i in range(3):
        p=Process(target=work,args=(lock,))
        p.start()

运行结果

总结:

加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。 虽然可以用文件共享数据实现进程间通信,但问题是: 1.效率低(共享数据基于文件,而文件是硬盘上的数据) 2.需要自己加锁处理

因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。 1 队列和管道都是将数据存放于内存中 2 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来, 我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。

七、队列

进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的。

创建队列的类(底层就是以管道和锁定的方式实现)

Queue([maxsize]) #创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。 

参数介绍:

maxsize是队列中允许最大项数,省略则无大小限制。

方法介绍:

q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.
 
q.get_nowait():同q.get(False)
q.put_nowait():同q.put(False)

q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样
from multiprocessing import Process,Queue

q=Queue(3)


q.put(1)
q.put(2)
q.put(3)
print(q.full()) #满了

print(q.get())
print(q.get())
print(q.get())
print(q.empty()) #空了

运行结果

生产者消费者模型

比如有两个进程A和B,它们共享一个固定大小的缓冲区,A进程产生数据放入缓冲区,B进程从缓冲区中取出数据进行计算,那么这里其实就是一个生产者和消费者的模式,A相当于生产者,B相当于消费者。

在多线程开发中,如果生产者生产数据的速度很快,而消费者消费数据的速度很慢,那么生产者就必须等待消费者消费完了数据才能够继续生产数据,因为生产那么多也没有地方放啊;同理如果消费者的速度大于生产者那么消费者就会经常处理等待状态,所以为了达到生产者和消费者生产数据和消费数据之间的平衡,那么就需要一个缓冲区用来存储生产者生产的数据,所以就引入了生产者-消费者模式

简单来说这里的缓冲区的作用就是为了平衡生产者和消费者的处理能力,起到一个数据缓存的作用,同时也达到了一个解耦的作用

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()
    print('主')

此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。

解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
    q.put(None) #发送结束信号
if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()
    print('主')

注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(2):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()

    p1.join()
    q.put(None) #发送结束信号
    print('主')

但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(name,q):
    for i in range(2):
        time.sleep(random.randint(1,3))
        res='%s%s' %(name,i)
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))



if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=('包子',q))
    p2=Process(target=producer,args=('骨头',q))
    p3=Process(target=producer,args=('泔水',q))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))
    c2=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    p2.start()
    p3.start()
    c1.start()

    p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号
    p2.join()
    p3.join()
    q.put(None) #有几个消费者就应该发送几次结束信号None
    q.put(None) #发送结束信号
    print('主')

其实我们的思路无非是发送结束信号而已,有另外一种队列提供了这种机制

JoinableQueue([maxsize]):这就像是一个Queue对象,但队列允许项目的使用者通知生成者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。

参数介绍: maxsize是队列中允许最大项数,省略则无大小限制。  

方法介绍: JoinableQueue的实例p除了与Queue对象相同的方法之外还具有:

q.task_done():使用者使用此方法发出信号,表示q.get()的返回项目已经被处理。如果调用此方法的次数大于从队列中删除项目的数量,将引发ValueError异常

q.join():生产者调用此方法进行阻塞,直到队列中所有的项目均被处理。阻塞将持续到队列中的每个项目均调用q.task_done()方法为止
from multiprocessing import Process,JoinableQueue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

        q.task_done() #向q.join()发送一次信号,证明一个数据已经被取走了

def producer(name,q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='%s%s' %(name,i)
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
    q.join()


if __name__ == '__main__':
    q=JoinableQueue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=('包子',q))
    p2=Process(target=producer,args=('骨头',q))
    p3=Process(target=producer,args=('泔水',q))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))
    c2=Process(target=consumer,args=(q,))
    c1.daemon=True
    c2.daemon=True

    #开始
    p_l=[p1,p2,p3,c1,c2]
    for p in p_l:
        p.start()

    p1.join()
    p2.join()
    p3.join()
    print('主') 
    
    #主进程等--->p1,p2,p3等---->c1,c2
    #p1,p2,p3结束了,证明c1,c2肯定全都收完了p1,p2,p3发到队列的数据
    #因而c1,c2也没有存在的价值了,应该随着主进程的结束而结束,所以设置成守护进程

八、进程池

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。多进程是实现并发的手段之一,需要注意的问题是:

  1. 很明显需要并发执行的任务通常要远大于核数
  2. 一个操作系统不可能无限开启进程,通常有几个核就开几个进程
  3. 进程开启过多,效率反而会下降(开启进程是需要占用系统资源的,而且开启多余核数目的进程也无法做到并行)

例如当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个。。。手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。

我们就可以通过维护一个进程池来控制进程数目,比如httpd的进程模式,规定最小进程数和最大进程数...
ps:对于远程过程调用的高级应用程序而言,应该使用进程池,Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,就重用进程池中的进程。

创建进程池的类:如果指定numprocess为3,则进程池会从无到有创建三个进程,然后自始至终使用这三个进程去执行所有任务,不会开启其他进程


Pool([numprocess  [,initializer [, initargs]]]):创建进程池 
参数介绍:

numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
initializer:是每个工作进程启动时要执行的可调用对象,默认为None
initargs:是要传给initializer的参数组


 方法介绍:
1 p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()
2 p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。
3    
4 p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
5 P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用
from multiprocessing import Pool
import os,time
def work(n):
    print('%s run' %os.getpid())
    time.sleep(2)
    return n**2

if __name__ == '__main__':
    p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l=[]
    for i in range(6):
        # 同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞,
        # 但不管该任务是否存在阻塞,同步调用都会在原地等着,只是等的过程中若是任务发生了阻塞就会被夺走cpu的执行权限
        res=p.apply(work,args=(i,))
        res_l.append(res)
    print(res_l)

运行结果

from multiprocessing import Pool
import os, time


def work(n):
    print('%s run' % os.getpid())
    time.sleep(3)
    return n ** 2


if __name__ == '__main__':
    pool = Pool(3)  # 进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l = []
    for i in range(6):
        res = p.apply_async(work, args=(i,))  # 同步运行(三个进程同时运行),阻塞、直到本次任务执行完毕拿到res

        res_l.append(res)

    # 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,
    # 等待进程池内任务都处理完,然后可以用get收集结果,否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
    pool.close()
    pool.join()
    for res in res_l:
        print(res.get())  # 使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get

运行结果

回调函数

需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数

我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。

from multiprocessing import Pool
import requests
import json
import os

def get_page(url):
    print('<进程%s> get %s' %(os.getpid(),url))
    respone=requests.get(url)
    if respone.status_code == 200:
        return {'url':url,'text':respone.text}

def pasrse_page(res):
    print('<进程%s> parse %s' %(os.getpid(),res['url']))
    parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
    with open('db.txt','a') as f:
        f.write(parse_res)


if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.python.org',
        'https://www.openstack.org',
        'https://help.github.com/',
        'http://www.sina.com.cn/'
    ]

    p=Pool(3)
    res_l=[]
    for url in urls:
        res=p.apply_async(get_page,args=(url,),callback=pasrse_page)
        res_l.append(res)

    p.close()
    p.join()
    print([res.get() for res in res_l]) #拿到的是get_page的结果,其实完全没必要拿该结果,该结果已经传给回调函数处理了

'''
打印结果:
<进程3388> get https://www.baidu.com
<进程3389> get https://www.python.org
<进程3390> get https://www.openstack.org
<进程3388> get https://help.github.com/
<进程3387> parse https://www.baidu.com
<进程3389> get http://www.sina.com.cn/
<进程3387> parse https://www.python.org
<进程3387> parse https://help.github.com/
<进程3387> parse http://www.sina.com.cn/
<进程3387> parse https://www.openstack.org
[{'url': 'https://www.baidu.com', 'text': '<!DOCTYPE html>\r\n...',...}]
'''

参考文章:

python并发编程之多进程 - linhaifeng - 博客园 (cnblogs.com)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值