YOLOV8 YOLOV11训练自己的数据集

1.准备数据

1.1 为数据打标签

假设你已经有了自己要训练的照片,我们可以使用lableme或者其他工具为图像标注,这里不再过多演示,因为标注的数据是json格式而YOLO需要的是下面格式的数据(类别  矩形框的中心点坐标x,y    框的长宽)

所以需要用脚本进行数据的转换如下:

# 处理labelme多边形矩阵的标注  json转化txt
import json
import os

name2id = {'People': 0, 'NoPeople': 1} #此处需要根据你自己的数据集类型进行修改

def convert(img_size, box):
    dw = 1. / (img_size[0])
    dh = 1. / (img_size[1])
    x = (box[0] + box[2]) / 2.0
    y = (box[1] + box[3]) / 2.0
    w = abs(box[2] - box[0])
    h = abs(box[3] - box[1])
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def decode_json(json_floder_path, txt_outer_path, json_name):
    txt_name = txt_outer_path + json_name[:-5] + '.txt'
    with open(txt_name, 'w') as f:
        json_path = os.path.join(json_floder_path, json_name)  # os路径融合
        data = json.load(open(json_path, 'r', encoding='gb2312', errors='ignore'))
        img_w = data['imageWidth']  # 图片的高
        img_h = data['imageHeight']  # 图片的宽
        isshape_type = data['shapes'][0]['shape_type']
        print(isshape_type)
        for i in data['shapes']:
            label_name = i['label']  # 得到json中你标记的类名
            if (i['shape_type'] == 'polygon'):  # 数据类型为多边形 需要转化为矩形
                x_max = 0
                y_max = 0
                x_min = 100000
                y_min = 100000
                for lk in range(len(i['points'])):
                    x1 = float(i['points'][lk][0])
                    y1 = float(i['points'][lk][1])
                    # print(x1)
                    if x_max < x1:
                        x_max = x1
                    if y_max < y1:
                        y_max = y1
                    if y_min > y1:
                        y_min = y1
                    if x_min > x1:
                        x_min = x1
                bb = (x_min, y_max, x_max, y_min)
            if (i['shape_type'] == 'rectangle'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

abstract man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值