【数学建模】灰色预测法


前言

灰色预测对原始数据进行生成处理来寻找系统变动的规律,并生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。


一、灰色预测是什么?

灰色预测是一种对含有不确定因素的系统进行预测的方法。 灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。 其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间

二、使用步骤

1.使用条件

这个应该是很清晰的,数据量少,四五个,然后类指数形式增长的,什么是类指数增长:就是一组数据累加后排列是否呈类指数增长,与且预测的时间不是很长,就可以用。 分为GM (1,1),GM (1,m),GM (n,m)分别用于一个自变量一个因变量,多个自变量一个因变量,多个自变量多个因变量。 灰色预测就是尽可能使用数据中含有的信息。 假设你有十组数据,需要预测接下来的三组数据,程序跑完,一般是有求残差的过程,看一看是不是小于0.1,如果每个数据点都是小于0.1,那这次灰色预测就是很好的。

注:

  1. 数据量较少的情况下使用;
  2. 数据呈类指数增长;
  3. 预测时间较短
  4. 要先进行级比值检验
  5. 后验差比检验
  6. 模型拟合检验
  7. 模型残差检验

2.以GM(1,1)为例

(1)级比值检验

在这里插入图片描述
(注:级比值介于区间[0.982,1.0098]时说明数据适合模型构建。)

从上表可知,针对某数据进行GM(1,1)模型构建,结果显示:级比值的最大值为1.010,在适用范围区间[0.982,1.0098]之外,意味着本数据进行GM(1,1)可能得不到满意的模型。但从数据来看,1.01非常接近于1.0098,因此有理由接着进行建模。

如下代码所示为数据级比检验:

m = length(A);
JiBi = ones(1,m-1);
for i =2:m
    JiBi(i-1) = A(i-1)/A(i);
end
max1 = max(JiBi);
min1 = min(JiBi);
FanWei = exp(2/(n+2))-exp(-2/(n+1))
if max1 - min1<FanWei
    disp(['数据通过级别检验']);
else 
    disp(['数据不通过级比检验']);
end

(2)后验差比检验

在这里插入图片描述
后验差比C值用于模型精度等级检验,该值越小越好,一般C值小于0.35则模型精度等级好,C值小于0.5说明模型精度合格,C值小于0.65说明模型精度基本合格,如果C值大于0.65,则说明模型精度等级不合格。

从上表可知,后验差比C值0.231 <=0.35,意味着模型精度等级非常好。

以下为发展系数、灰色作用量和C值代码:

 
%构造数据矩阵 
B = [-C;ones(1,n-1)];
Y = A; Y(1) = []; Y = Y';      %Y进行了转置,C的公式求法与百度文库 发生了一些变化
% 使用最小二乘法计算参数 a(发展系数)和b(灰作用量)
c = inv(B*B')*B*Y;          %核心公式  
c = c';
a = c(1); b = c(2);
disp(['发展系数:',num2str(a)]);
disp(['灰色作用量:',
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一帆1018

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值