基础 GAN 存在的问题
在开始讲解变种之前,首先讲一下GAN 存在的问题。第一个问题就是判别器D太强了,损失都是0。假设判别器D能力强,G vl生成的图片与真实图片相差巨大,G v2生成的图片与真实图片相差不多,但是判别器都能完美地识别出所有的正负样本,这样就无法知道G v1更好还是G v2更好了。第二个问题就是生成多样性的问题,也称为Mode Collapse。
反卷积
&nb
基础 GAN 存在的问题
在开始讲解变种之前,首先讲一下GAN 存在的问题。第一个问题就是判别器D太强了,损失都是0。假设判别器D能力强,G vl生成的图片与真实图片相差巨大,G v2生成的图片与真实图片相差不多,但是判别器都能完美地识别出所有的正负样本,这样就无法知道G v1更好还是G v2更好了。第二个问题就是生成多样性的问题,也称为Mode Collapse。
反卷积
&nb