开篇词:基于 Java 的深度学习框架及其生态圈

本文介绍了Deeplearning4j,一个基于Java的深度学习框架,它提供了与Java生态系统的无缝集成,支持分布式模型训练,并与多种开源框架兼容。Deeplearning4j包括ND4J、DataVec等实用子项目,提供张量运算加速、高阶接口和可视化功能。最新版本1.0.0-alpha引入了更多新功能和模型结构,支持自动微分和TensorFlow模型导入。此外,文章讨论了为何选择Deeplearning4j,强调其在Java企业应用和分布式计算中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着深度学习在语音、图像、自然语言等领域取得了广泛的成功,越来越多的企业、高校和科研单位开始投入大量的资源研发 AI 项目。同时,为了方便广大研发人员快速开发深度学习应用,专注于算法应用本身,避免重复造轮子的问题,各大科技公司先后开源了各自的深度学习框架,例如:TensorFlow(Google)、Torch/PyTorch(Facebook)、Caffe(BVLC)、CNTK(Microsoft)、PaddlePaddle(百度)等。

以上框架基本都是基于 Python 或者 C/C++ 开发的。而且很多基于 Python 的科学计算库,如 Numpy、Pandas 等都可以直接参与数据的建模,非常快捷高效。

然而,对于很多 IT 企业及政府网站,大量的应用都依赖于 Java 生态圈中的开源项目,如 Spring/Structs/Hibernate、Lucene、Elasticsearch、Neo4j 等。主流的分布式计算框架,如 Hadoop、Spark 都运行在 JVM 之上,很多海量数据的存储也基于 Hive、HDFS、HBase 这些存储介质上,这是一个不容忽视的事实。

有鉴于此,如果有可以跑在 JVM 上的深度学习框架,那么不光可以方便更多的 Java/JVM 工程师参与到人工智能的浪潮中,更重要的是可以与企

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangongxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值