可视化问答系统搭载RAG增强检索
想要实现完整的RAG系统,基座技术是前几周实现的Faiss向量库和文本向量嵌入。
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# 加载预训练的GPT模型和tokenizer
gpt_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
gpt_model = GPT2LMHeadModel.from_pretrained('gpt2')
def generate_answer(retrieved_docs, query):
context = " ".join(retrieved_docs) + " " + query
inputs = gpt_tokenizer.encode(context, return_tensors='pt', truncation=True, padding=True)
outputs = gpt_model.generate(inputs, max_length=200, num_return_sequences=1)
answer = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
# 生成回答
answer = generate_answer(retrieved_docs, query)
print("Generated Answer:", answer)
根据查询从Faiss数据库中索引相关知识
def retrieve(query, k=5):
query_em