LeetCode:110(Python)—— 平衡二叉树(简单)

平衡二叉树

概述:给定一个二叉树,判断它是否是高度平衡的二叉树。一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1

输入:root = [3,9,20,null,null,15,7]
输出:true

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

输入:root = []
输出:true

方法一:自顶向下的递归

思路:定义函数 height,用于计算二叉树中的任意一个节点 p 的高度。对于当前遍历到的节点,首先计算左右子树的高度,如果左右子树的高度差是否不超过 1 ,再分别递归地遍历左右子节点,并判断左子树和右子树是否平衡。

# 自顶向下的递归
class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        def height(root: TreeNode) -> int:
            if not root:
                return 0
            return max(height(root.left), height(root.right)) + 1
        if not root:
            return True
        return abs(height(root.left) - height(root.right)) <= 1 \
        and self.isBalanced(root.left) and self.isBalanced(root.right)

方法二:自底向上的递归

思路:自底向上递归的做法类似于后序遍历,对于当前遍历到的节点,先递归地判断其左右子树是否平衡,再判断以当前节点为根的子树是否平衡。

# 自底向上的递归
class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        def height(root: TreeNode) -> int:
            if not root:
                return 0
            left_height = height(root.left)
            right_height = height(root.right)
            if left_height == -1 or right_height == -1 \
            or abs(left_height - right_height) > 1:
                return -1
            else:
                return max(left_height, right_height) + 1
        return height(root) >= 0

总结

自底向上的递归就是及时止损,自顶向下的递归就是不管三七二十一先把所有的高度算一遍!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值