目录
一、本文介绍
二、原理介绍
三、核心代码
四、手把手教你添加DynamicConv机制
4.1 修改一
4.2 修改二
4.3 修改三
4.4 修改四
五、DynamicConv的yaml文件和运行记录
5.1 DynamicConv的yaml文件1
5.2 DynamicConv的yaml文件2
5.3 训练代码
5.4 DynamicConv的训练过程截图
五、本文总结
一、本文介绍
本文给大家带来的改进机制是CVPR2024的最新改进机制DynamicConv其是CVPR2024的最新改进机制,这个论文中介绍了一个名为ParameterNet的新型设计原则,它旨在在大规模视觉预训练模型中增加参数数量,同时尽量不增加浮点运算(FLOPs),所以本文的DynamicConv被提出来了,使得网络在保持低FLOPs的同时增加参数量,从而允许这些网络从大规模视觉预训练中获益,下面的图片为V10n和利用了DynamicConv的训练精度对比图,本文内容包含详细教程 + 代码 + 原理介绍。