2021牛客寒假算法基础集训营1(A-串)

题目描述

链接:https://ac.nowcoder.com/acm/contest/9981/A
来源:牛客网
长度不超过n,且包含子序列“us”的、只由小写字母构成的字符串有多少个? 答案对10^9+7取模。
所谓子序列,指一个字符串删除部分字符(也可以不删)得到的字符串。
例如,“unoacscc"包含子序列"us”,但"scscucu"则不包含子序列"us"

输入描述

一个正整数n(2≤n≤1e6)

输出描述

一个正整数,为满足条件的字符串数量对10^9+7取模的值

题解思路

**作者:神崎兰子
链接:https://ac.nowcoder.com/discuss/593200
来源:牛客网

定义dp[i]为长度为i且包含子序列"us"的字符串的数量。
那么对于长度i+1而言,包含子序列"us"的字符串有两类:
①前i个字符已经包含了子序列"us",后面接任意一个字符。数量为dp[i]26
②前i个字符包含字母u,但不包含子序列"us"。后面再接一个字符’s’即可。数量为26i-25i-dp[i]。
两者相加即为dp[i+1]
*

在此附上我的AC代码

#include<iostream>
using namespace std;
typedef long long ll;
ll mod=1e9+7;

ll pow_mod(ll a,ll b,ll c){
    ll ans = 1;
    ll base = a%c;
    while(b){
        if(b & 1) ans = (ans*base)%c;
        base = (base*base)%c;
        b >>= 1;
    }
    return ans;
}

ll n;
ll dp[1000100];

/*

①前i个字符已经包含了子序列"us",后面接任意一个字符。数量为dp[i]*26
②前i个字符包含字母u,但不包含子序列"us"。后面再接一个字符's'即可。数量为26^i-25^i-dp[i]。
2. 全排列 - 不含u字母的 - 有子序列us的。 

*/

int main()
{
	cin >> n;
	dp[1]=0;
	dp[2]=1;
	for(int i=3;i<=1e6;i++)
		dp[i]=(pow_mod(26,i-1,mod)-pow_mod(25,i-1,mod)+25*dp[i-1]+mod)%mod;
	ll ans=0;
	for(int i=1;i<=n;i++)
		ans = (ans+dp[i]%mod)%mod; 
	cout << ans;
	return 0;
}
### 关于2020年寒假算法基础集训营中的欧几里得算法 在2020年的寒假算法基础集训营中,确实存在涉及欧几里得算法的相关题目。具体来说,在第四场竞赛的第一题即为“A. 欧几里得”,该题目的核心在于利用扩展欧几里得定理来解决问题[^5]。 #### 扩展欧几里得算法简介 扩展欧几里得算法主要用于求解形如 ax + by = gcd(a, b) 的线性定方程的一组特解(x,y),其中gcd表示最大公约数。此方法仅能够计算两个整数的最大公因数,还能找到满足上述条件的具体系数x和y。 对于给定的数据范围较小的情况可以直接通过递归来实现;而对于较大数据则需考虑效率优化问题。下面给出了一段基于C++语言编写的用于解决此类问题的模板代码: ```cpp #include<bits/stdc++.h> #define int long long using namespace std; // 定义全局变量存储结果 int x, y; void ex_gcd(int a, int b){ if(b == 0){ x = 1; y = 0; return ; } ex_gcd(b, a % b); int tmp = x; x = y; y = tmp - (a / b) * y; } ``` 这段程序实现了经典的扩展欧几里得算法逻辑,并可以作为处理类似问题的基础工具函数调用。 #### 实际应用案例分析 回到原题本身,“A. 欧几里得”的解答思路就是先预处理斐波那契数列前若干项数值存入数组`a[]`内以便快速查询,之后针对每一次询问直接输出对应位置处两相邻元素之和即可得出最终答案。这实际上巧妙运用到了广为人知的裴蜀定理——任意一对互质正整数都可由它们自身的倍数组合而成,而这里正是借助了这一性质简化了解决方案的设计过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值