串口透传
- “透传”通常指的是数据的透明传输,意思是在不对数据进行任何处理或修改的情况下,将数据从一个接口转发到另一个接口。
- 值得注意的是要避免串口之间无限制的透明,可以采用互斥锁的方式进行限制
- 使用方法
- 对USART1和USART3(用他俩举例)的模式都是设置为Asynchronous,并开启对应的中断。
- RCC的High SPeed CLock模式设置为Crystal/Ceramic
- 配置对应的时钟为64Mhz
- 在main函数中启动串口1和串口3的空闲中断模式,接收数据 HAL_UARTEx_ReceiveToIdle_IT(&huart1, rxbuf1, sizeof(rxbuf1));
HAL_UARTEx_ReceiveToIdle_IT(&huart3, rxbuf3, sizeof(rxbuf3));
- 在
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef* huart, uint16_t Size)
写对应的透传即可
#include "main.h"
#include <string.h>
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart3;
char rxbuf1[128] = {
0};
char rxbuf3[128] = {
0};
uint8_t uart1_to_uart3_enable = 1;
uint8_t uart3_to_uart1_enable = 1;
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef* huart, uint16_t Size)
{
printf("HAL_UARTEx_RxEventCallback triggered\n");
if (huart == &huart1 && uart1_to_uart3_enable)
{
uart3_to_uart1_enable = 0;
HAL_UART_Transmit(&huart3, (uint8_t*)rxbuf1, Size, HAL_MAX_DELAY);
memset(rxbuf1, 0, sizeof(rxbuf1));
HAL_UARTEx_ReceiveToIdle_IT(&huart1, rxbuf1, sizeof(rxbuf1));
uart3_to_uart1_enable = 1;
printf("port1 sent to port 3\n");
}
else if (huart == &huart3 && uart3_to_uart1_enable)
{
uart1_to_uart3_enable = 0;
HAL_UART_Transmit(&huart1, (uint8_t*)rxbuf3, Size, HAL_MAX_DELAY);
memset(rxbuf3, 0, sizeof(rxbuf3));
HAL_UARTEx_ReceiveToIdle_IT(&huart3, rxbuf3, sizeof(rxbuf3));
uart1_to_uart3_enable = 1;
printf("port3 sent to port 1\n");
}
return;
}
int __io_putchar(int ch)
{
HAL_UART_Transmit(&huart1, (unsigned char*)&ch, 1, HAL_MAX_DELAY);
return ch;
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_USART3_UART_Init();
HAL_UARTEx_ReceiveToIdle_IT(&huart1, rxbuf1, sizeof(rxbuf1));
HAL_UARTEx_ReceiveToIdle_IT(&huart3, rxbuf3, sizeof(rxbuf3));
while (1)
{
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {
0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {
0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL8;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART3_UART_Init(void)
{
huart3.