STM32使用IIC通信

本文档详细介绍了STM32如何使用IIC协议与24C02 EEPROM进行通信,包括IIC总线的开始、结束和应答信号,以及具体的操作函数如初始化、发送和接收数据。在实验中,通过STM32向24C02写入和读取数据,并进行了错误检测和应答确认。在`main.c`文件中,实现了写入和读取24C02的示例,用于验证通信的正确性。

一、IIC简介

IIC数据总线是由数据线 SDA 和时钟 SCL 构成的串行总线,可发送和接收数据。 在 CPU 与被控 IC 之间、IC 与 IC 之间进行双向传送。(同步半双工)

I2C 总线在传送数据过程中共有三种类型信号, 它们分别是:开始信号、结束信号和应答 信号。

开始信号:SCL 为高电平时,SDA 由高电平向低电平跳变,开始传送数据。

结束信号:SCL 为高电平时,SDA 由低电平向高电平跳变,结束传送数据。

应答信号:接收数据的 IC 在接收到 8bit 数据后,向发送数据的 IC 发出特定的低电平脉冲,表示已收到数据。CPU 向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU 接 收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。

二、IIC通信实验(STM32+24C02)

24C02是一种IIC总线协议的EEPROM存储器,所以要实现STM32向24C02写数据就要通过IIC协议。

iic.c        

#include "iic.h"
#include "delay.h"

//初始化IIC
void IIC_Init(void)
{					     
	GPIO_InitTypeDef GPIO_InitStructure;
	RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOB, ENABLE );	//使能GPIOB时钟
	   
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ;   //推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);
	GPIO_SetBits(GPIOB,GPIO_Pin_6|GPIO_Pin_7); 	//PB6,PB7 输出高
}
//产生IIC起始信号
void IIC_Start(void)
{
	SDA_OUT();     //sda线输出
	IIC_SDA=1;	  	  
	IIC_SCL=1;
	delay_us(4);
 	IIC_SDA=0;//START:when CLK is high,DATA change form high to low 
	delay_us(4);
	IIC_SCL=0;//钳住I2C总线,准备发送或接收数据 
}	  
//产生IIC停止信号
void IIC_Stop(void)
{
	SDA_OUT();//sda线输出
	IIC_SCL=0;
	IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
 	delay_us(4);
	IIC_SCL=1; 
	IIC_SDA=1;//发送I2C总线结束信号
	delay_us(4);							   	
}
//等待应答信号到来
//返回值:1,接收应答失败
//        0,接收应答成功
u8 IIC_Wait_Ack(void)
{
	u8 ucErrTime=0;
	SDA_IN();      //SDA设置为输入  
	IIC_SDA=1;delay_us(1);	   
	IIC_SCL=1;delay_us(1);	 
	while(READ_SDA)
	{
		ucErrTime++;
		if(ucErrTime>250)
		{
			IIC_Stop();
			return 1;
		}
	}
	IIC_SCL=0;//时钟输出0 	   
	return 0;  
} 
//产生ACK应答
void IIC_Ack(void)
{
	IIC_SCL=0;
	SDA_OUT();
	IIC_SDA=0;
	delay_us(2);
	IIC_SCL=1;
	delay_us(2);
	IIC_SCL=0;
}
//不产生ACK应答		    
void IIC_NAck(void)
{
	IIC_SCL=0;
	SDA_OUT();
	IIC_SDA=1;
	delay_us(2);
	IIC_SCL=1;
	delay_us(2);
	IIC_SCL=0;
}					 				     
//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答			  
void IIC_Send_Byte(u8 txd)
{                        
    u8 t;   
	SDA_OUT(); 	    
    IIC_SCL=0;//拉低时钟开始数据传输
    for(t=0;t<8;t++)
    {              
        IIC_SDA=(txd&0x80)>>7;
        txd<<=1; 	  
		delay_us(2);   //对TEA5767这三个延时都是必须的
		IIC_SCL=1;
		delay_us(2); 
		IIC_SCL=0;	
		delay_us(2);
    }	 
} 	    
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK   
u8 IIC_Read_Byte(unsigned char ack)
{
	unsigned char i,receive=0;
	SDA_IN();//SDA设置为输入
    for(i=0;i<8;i++ )
	{
        IIC_SCL=0; 
        delay_us(2);
		IIC_SCL=1;
        receive<<=1;
        if(READ_SDA)receive++;   
		delay_us(1); 
    }					 
    if (!ack)
        IIC_NAck();//发送nACK
    else
        IIC_Ack(); //发送ACK   
    return receive;
}

24c02.c

#include "24c02.h" 
#include "delay.h"
#include "iic.h"
//初始化IIC接口
void AT24CXX_Init(void)
{
	IIC_Init();
}
//在AT24CXX指定地址读出一个数据
//ReadAddr:开始读数的地址  
//返回值  :读到的数据
u8 AT24CXX_ReadOneByte(u16 ReadAddr)
{				  
	u8 temp=0;		  	    																 
    IIC_Start();  
	if(EE_TYPE>AT24C16)
	{
		IIC_Send_Byte(0XA0);	   //发送写命令
		IIC_Wait_Ack();
		IIC_Send_Byte(ReadAddr>>8);//发送高地址
		IIC_Wait_Ack();		 
	}else IIC_Send_Byte(0XA0+((ReadAddr/256)<<1));   //发送器件地址0XA0,写数据 	 

	IIC_Wait_Ack(); 
    IIC_Send_Byte(ReadAddr%256);   //发送低地址
	IIC_Wait_Ack();	    
	IIC_Start();  	 	   
	IIC_Send_Byte(0XA1);           //进入接收模式			   
	IIC_Wait_Ack();	 
    temp=IIC_Read_Byte(0);		   
    IIC_Stop();//产生一个停止条件	    
	return temp;
}
//在AT24CXX指定地址写入一个数据
//WriteAddr  :写入数据的目的地址    
//DataToWrite:要写入的数据
void AT24CXX_WriteOneByte(u16 WriteAddr,u8 DataToWrite)
{				   	  	    																 
    IIC_Start();  
	if(EE_TYPE>AT24C16)
	{
		IIC_Send_Byte(0XA0);	    //发送写命令
		IIC_Wait_Ack();
		IIC_Send_Byte(WriteAddr>>8);//发送高地址
 	}else
	{
		IIC_Send_Byte(0XA0+((WriteAddr/256)<<1));   //发送器件地址0XA0,写数据 
	}	 
	IIC_Wait_Ack();	   
    IIC_Send_Byte(WriteAddr%256);   //发送低地址
	IIC_Wait_Ack(); 	 										  		   
	IIC_Send_Byte(DataToWrite);     //发送字节							   
	IIC_Wait_Ack();  		    	   
    IIC_Stop();//产生一个停止条件 
	delay_ms(10);	 
}
//在AT24CXX里面的指定地址开始写入长度为Len的数据
//该函数用于写入16bit或者32bit的数据.
//WriteAddr  :开始写入的地址  
//DataToWrite:数据数组首地址
//Len        :要写入数据的长度2,4
void AT24CXX_WriteLenByte(u16 WriteAddr,u32 DataToWrite,u8 Len)
{  	
	u8 t;
	for(t=0;t<Len;t++)
	{
		AT24CXX_WriteOneByte(WriteAddr+t,(DataToWrite>>(8*t))&0xff);
	}												    
}

//在AT24CXX里面的指定地址开始读出长度为Len的数据
//该函数用于读出16bit或者32bit的数据.
//ReadAddr   :开始读出的地址 
//返回值     :数据
//Len        :要读出数据的长度2,4
u32 AT24CXX_ReadLenByte(u16 ReadAddr,u8 Len)
{  	
	u8 t;
	u32 temp=0;
	for(t=0;t<Len;t++)
	{
		temp<<=8;
		temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1); 	 				   
	}
	return temp;												    
}
//检查AT24CXX是否正常
//这里用了24XX的最后一个地址(255)来存储标志字.
//如果用其他24C系列,这个地址要修改
//返回1:检测失败
//返回0:检测成功
u8 AT24CXX_Check(void)
{
	u8 temp;
	temp=AT24CXX_ReadOneByte(255);//避免每次开机都写AT24CXX			   
	if(temp==0X55)return 0;		   
	else//排除第一次初始化的情况
	{
		AT24CXX_WriteOneByte(255,0X55);
	    temp=AT24CXX_ReadOneByte(255);	  
		if(temp==0X55)return 0;
	}
	return 1;											  
}

//在AT24CXX里面的指定地址开始读出指定个数的数据
//ReadAddr :开始读出的地址 对24c02为0~255
//pBuffer  :数据数组首地址
//NumToRead:要读出数据的个数
void AT24CXX_Read(u16 ReadAddr,u8 *pBuffer,u16 NumToRead)
{
	while(NumToRead)
	{
		*pBuffer++=AT24CXX_ReadOneByte(ReadAddr++);	
		NumToRead--;
	}
}  
//在AT24CXX里面的指定地址开始写入指定个数的数据
//WriteAddr :开始写入的地址 对24c02为0~255
//pBuffer   :数据数组首地址
//NumToWrite:要写入数据的个数
void AT24CXX_Write(u16 WriteAddr,u8 *pBuffer,u16 NumToWrite)
{
	while(NumToWrite--)
	{
		AT24CXX_WriteOneByte(WriteAddr,*pBuffer);
		WriteAddr++;
		pBuffer++;
	}
}

两个文件的作用分别为一个是IIC的驱动,一个是24c02使用iic进行存储。

main.c

#include "led.h"
#include "delay.h"
#include "key.h"
#include "sys.h"
#include "lcd.h"
#include "usart.h"
#include "usmart.h"	 
#include "24c02.h"	 


			 	
//要写入到24c02的字符串数组
const u8 TEXT_Buffer[]={"Elite STM32 IIC TEST"};
#define SIZE sizeof(TEXT_Buffer)	
	
 int main(void)
 {	 
	u8 key;
	u16 i=0;
	u8 datatemp[SIZE];
	delay_init();	    	 //延时函数初始化	  
  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置中断优先级分组为组2:2位抢占优先级,2位响应优先级
	uart_init(115200);	 	//串口初始化为115200
	LED_Init();		  		//初始化与LED连接的硬件接口
	LCD_Init();			   	//初始化LCD 	
	KEY_Init();				//按键初始化		 	 	
	AT24CXX_Init();			//IIC初始化 

 	POINT_COLOR=RED;//设置字体为红色 		
 	while(AT24CXX_Check())//检测不到24c02
	{
		LCD_ShowString(30,150,200,16,16,"24C02 Check Failed!");
		delay_ms(500);
		LCD_ShowString(30,150,200,16,16,"Please Check!      ");
		delay_ms(500);
		LED0=!LED0;//DS0闪烁
	}
	LCD_ShowString(30,150,200,16,16,"24C02 Ready!");    
 	POINT_COLOR=BLUE;//设置字体为蓝色	  
	while(1)
	{
		key=KEY_Scan(0);
		if(key==KEY1_PRES)//KEY_UP按下,写入24C02
		{
			LCD_Fill(0,170,239,319,WHITE);//清除半屏    
 			LCD_ShowString(30,170,200,16,16,"Start Write 24C02....");
			AT24CXX_Write(0,(u8*)TEXT_Buffer,SIZE);
			LCD_ShowString(30,170,200,16,16,"24C02 Write Finished!");//提示传送完成
		}
		if(key==KEY0_PRES)//KEY1按下,读取字符串并显示
		{
 			LCD_ShowString(30,170,200,16,16,"Start Read 24C02.... ");
			AT24CXX_Read(0,datatemp,SIZE);
			LCD_ShowString(30,170,200,16,16,"The Data Readed Is:  ");//提示传送完成
			LCD_ShowString(30,190,200,16,16,datatemp);//显示读到的字符串
		}
		i++;
		delay_ms(10);
		if(i==20)
		{
			LED0=!LED0;//提示系统正在运行	
			i=0;
		}		   
	}
}

还有几个LCD屏幕驱动函数的定义,这里就不粘了

### STM32 IIC通信模块原理图及硬件设计指南 STM32微控制器的I²C(Inter-Integrated Circuit)通信模块是一种广泛用于连接低速外设的串行通信接口。I²C总线采用双线制设计,包括SDA(数据线)和SCL(时钟线),支持多主多从的通信架构。在硬件设计中,理解其原理图以及设计要点对于确保通信的稳定性和可靠性至关重要。 #### 原理图设计要点 1. **电源与去耦电容** STM32的I²C模块通常需要稳定的电源供电。为了减少电源噪声,应在电源引脚附近添加去耦电容(通常为0.1μF陶瓷电容)。 2. **上拉电阻配置** I²C总线的SDA和SCL线需要通过上拉电阻连接到电源。典型的上拉电阻值在1kΩ到10kΩ之间,具体取决于总线速率和电容负载。高速模式下可能需要更低的阻值以保证信号完整性[^1]。 3. **引脚配置** STM32的I²C引脚(如PB6和PB7)应配置为开漏输出模式,并启用内部上拉或外部上拉电阻。在PCB布线时,应尽量缩短SDA和SCL线的长度以减少干扰。 4. **外部设备连接** I²C从设备(如EEPROM、传感器等)应通过SDA和SCL线与STM32连接。确保设备的地址设置正确,并且总线上的设备地址不冲突。 #### 硬件设计指南 1. **总线速率选择** STM32的I²C模块支持标准模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps)。根据应用需求选择合适的速率,并确保外部设备支持该速率。 2. **总线隔离与保护** 在工业或高噪声环境中,建议使用光耦或I²C缓冲器(如PCA9517)来实现电气隔离。此外,可以在SDA和SCL线上添加TVS二极管以防止静电放电(ESD)损坏器件。 3. **时钟同步与仲裁机制** I²C总线支持多主模式,STM32可通过仲裁机制确保多个主设备不会同时发送数据。设计时应确保SCL线的同步逻辑正确,避免时钟拉伸导致通信失败。 4. **信号完整性与布线建议** 在PCB布局中,SDA和SCL线应尽量平行并靠近,减少环路面积以降低电磁干扰(EMI)。此外,避免在I²C信号线上使用过孔(Vias),以减少信号反射。 5. **I²C扩展与多路复用** 如果需要连接多个I²C设备,可以使用I²C多路复用器(如PCA9548A)来扩展总线。STM32可以通过控制多路复用器的地址选择引脚来切换不同的I²C通道。 #### 示例代码 以下是一个简单的I²C初始化代码示例,适用于STM32 HAL库: ```c #include "stm32f4xx_hal.h" I2C_HandleTypeDef hi2c1; void MX_I2C1_Init(void) { hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; // 标准模式 hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0x00; // 主模式不需要地址 hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0x00; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { // 初始化错误处理 } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值