rosetta氨基酸参数

本文介绍了Rosetta中氨基酸参数的细节,包括残基名称、IO字符串、类型、原子信息、连接性和内部坐标等,这对于蛋白质建模和优化至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

rosetta residue topology file

NAME ALA
NAME The name of the Residue. Must be unique among all residues loaded into Rosetta
IO_STRING ALA A
IO_STRING The 3 letter and 1 letter codes representing the residue. 3 letter code is not unique; it does not need to be the same as the name. 1 letter code is Z by default.
TYPE POLYMER #residue type
TYPE The type of residue being represented, should be ‘LIGAND’ for ligands, or ‘POLYMER’ for amino acids, DNA and RNA bases, or other polymer building-blocks.
AA ALA
AA The amino acid type. Should be “UNK” for ligands, or for most non-canonicals. (Note that this corresponds to the core::chemical::AA enum, internally.)
ROTAMER_AA ALA
ATOM N Nbb NH1 -0.47 -0.350
ATOM CA CAbb CT1 0.07 0.100
ATOM C CObb C 0.51 0.550
ATOM O OCbb O -0.51 -0.550
ATOM CB CH3 CT3 -0.27 0.000
ATOM H HNbb H 0.31 0.250
ATOM HA Hapo HB 0.09 0.000
ATOM 1HB Hapo HA 0.09 0.000
ATOM 2HB Hapo HA 0.09 0.000
ATOM 3HB Hapo HA 0.09 0.000
The first column after the ATOM specifier is the atom name, and the second column (the Nbb/CAbb/etc.) is the Rosetta atom type. The third column (NH1/CT1/C/O) is the CHARMM molecular mechanics atom type, which is not used by default in Rosetta, but is read by certain specialty energy terms (the “MM” terms). (The fourth and fifth columns are partial charges.)
LOWER_CONNECT N
UPPER_CONNECT C
CONNECT Gives an atom a connection to an (unspecified) atom in another residue. This is not to be used for the N and C in the backbone; those are given with LOWER_CONNECT and UPPER_CONNECT respectively.
BOND N CA
BOND N H
BOND CA C
BOND CA CB
BOND CA HA
BOND_TYPE C O 2
BOND CB 1HB
BOND CB 2HB
BOND CB 3HB
BOND Defines a bond connection between two named atoms.
PROPERTIES PROTEIN CANONICAL_AA ALPHA_AA L_AA METALBINDING ALIPHATIC
METAL_BINDING_ATOMS O
PROPERTIES A series of properties describing this ligand type or residue type. Allowed properties include (though this list is not exhaustive): PROTEIN POLYMER LIGAND COARSE METAL METALBINDING DNA RNA CARBOHYDRATE SURFACE POLAR CHARGED AROMATIC TERMINUS LOWER_TERMINUS UPPER_TERMINUS SC_ORBITALS. For an exhaustive list of allowed properties, see the file source/src/core/chemical/residue_properties/general_properties.list in the main Rosetta repository.
NBR_ATOM CB
NBR_ATOM The PDB name of the “neighbor atom”. In the case of ligands, this defaults to the atom that is closest to the geometric center of the ligand
#APL O to CB DISTANCE – MAX O-CB OBSERVED IN UBQ
NBR_RADIUS 3.4473
NBR_RADIUS The radius of gyration of the ligand, used to define the overall size of the ligand.
FIRST_SIDECHAIN_ATOM CB
RAMA_PREPRO_FILENAME scoring/score_functions/rama/fd/all.ramaProb scoring/score_functions/rama/fd/prepro.ramaProb
ACT_COORD_ATOMS CB END
ICOOR_INTERNAL N 0.000000 0.000000 0.000000 N CA C
ICOOR_INTERNAL CA 0.000000 180.000000 1.458001 N CA C
ICOOR_INTERNAL C 0.000000 68.800003 1.523258 CA N C
ICOOR_INTERNAL UPPER 149.999985 63.800007 1.328685 C CA N
ICOOR_INTERNAL O -180.000000 59.200005 1.231015 C CA UPPER
ICOOR_INTERNAL CB -122.800000 69.625412 1.521736 CA N C
ICOOR_INTERNAL 1HB -180.000000 70.500000 1.090040 CB CA N
ICOOR_INTERNAL 2HB 120.000000 70.500000 1.090069 CB CA 1HB
ICOOR_INTERNAL 3HB 120.000000 70.500000 1.088803 CB CA 2HB
ICOOR_INTERNAL HA -119.000000 71.900000 1.090078 CA N CB
ICOOR_INTERNAL LOWER -150.000000 58.300003 1.328685 N CA C
ICOOR_INTERNAL H -180.000000 60.849998 1.010000 N CA LOWER
ICOOR_INTERNAL The internal coordinates of an atom. The format goes backwards and looks like this:
And the fields are the following:
● Child atom
● phi angle (torsion angle between A1, A2, A3, A4)
● theta angle (improper angle = (180 - (angle between A4, A3, A2)))
● distance (between A4 and A3)
● parent atom
● angle atom
● torsion atom

Rosetta模型是一种常用于土壤水力参数计算的工具。土壤水力参数是指描述土壤水分运动特性的参数,对于土壤水分管理和灌溉设计非常重要。 在计算rosetta模型参数时,一般需要以下数据输入: 1. 土壤粒径分布:包括不同粒径的土壤颗粒所占的比例,可以通过粒度分析实验获得。 2. 原始土壤含水量:指土壤中总水分的质量与干土壤质量的比值。 3. 饱和导水率:指土壤在饱和状态下的水的通过速率。可以通过试验室测定或者根据土壤类型估算获得。 4. 水分保持能力曲线:描述土壤在不同水势下保持水分的能力。通常通过试验室测定获得。 5. 渗透曲线:描述土壤在不同水势下渗透性的变化。也可以通过试验室测定获得。 根据以上数据输入,可以运用rosetta模型进行参数计算。主要计算过程包括: 1. 根据土壤粒径分布和饱和导水率,计算土壤的水力导率参数。 2. 利用水分保持能力曲线和饱和导水率,计算土壤含水量水势函数。 3. 结合土壤饱和导水率和渗透曲线,计算土壤渗透性参数。 通过上述计算过程,可以得到土壤在不同水势下的水力特性参数,如饱和导水率,持水能力等。这些参数对于土壤水分传递过程的建模和灌溉管理具有重要意义。 需要注意的是,rosetta模型是一个复杂的模型,对输入数据的准确性和模型的参数选择都有一定要求。因此,在使用rosetta模型进行土壤水力参数计算时,需要充分了解模型原理,并准确获取和处理输入数据,以获得可靠的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值