elasticsearch(17) 几种优化查询分数得方法

本文介绍四种常见ES搜索优化方法:boost权重调整、查询语句重构、negativeboost负相关分数及constant_score固定分数应用。通过实例展示如何提升搜索相关度评分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.加boost权重

2.重构查询语句

3.nagtive boost 负相关分数

4.constant_score 固定分数

对相关度评分进行调节和优化的常见的4种方法

1、query-time boost

GET /forum/article/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "title": {
              "query": "java spark",
              "boost": 2
            }
          }
        },
        {
          "match": {
            "content": "java spark"
          }
        }
      ]
    }
  }
}

2、重构查询结构

重构查询结果,在es新版本中,影响越来越小了。一般情况下,没什么必要的话,大家不用也行。

GET /forum/article/_search 
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "content": "java"
          }
        },
        {
          "match": {
            "content": "spark"
          }
        },
        {
          "bool": {
            "should": [
              {
                "match": {
                  "content": "solution"
                }
              },
              {
                "match": {
                  "content": "beginner"
                }
              }
            ]
          }
        }
      ]
    }
  }
}

3、negative boost

搜索包含java,不包含spark的doc,但是这样子很死板
搜索包含java,尽量不包含spark的doc,如果包含了spark,不会说排除掉这个doc,而是说将这个doc的分数降低
包含了negative term的doc,分数乘以negative boost,分数降低

GET /forum/article/_search 
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "content": "java"
          }
        }
      ],
      "must_not": [
        {
          "match": {
            "content": "spark"
          }
        }
      ]
    }
  }
}

GET /forum/article/_search 
{
  "query": {
    "boosting": {
      "positive": {
        "match": {
          "content": "java"
        }
      },
      "negative": {
        "match": {
          "content": "spark"
        }
      },
      "negative_boost": 0.2
    }
  }
}

negative的doc,会乘以negative_boost,降低分数

4、constant_score

如果你压根儿不需要相关度评分,直接走constant_score加filter,所有的doc分数都是1,没有评分的概念了

GET /forum/article/_search 
{
  "query": {
    "bool": {
      "should": [
        {
          "constant_score": {
            "query": {
              "match": {
                "title": "java"
              }
            }
          }
        },
        {
          "constant_score": {
            "query": {
              "match": {
                "title": "spark"
              }
            }
          }
        }
      ]
    }
  }
 

5.自己写函数

给所有的帖子数据增加follower数量

POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"follower_num" : 5} }
{ "update": { "_id": "2"} }
{ "doc" : {"follower_num" : 10} }
{ "update": { "_id": "3"} }
{ "doc" : {"follower_num" : 25} }
{ "update": { "_id": "4"} }
{ "doc" : {"follower_num" : 3} }
{ "update": { "_id": "5"} }
{ "doc" : {"follower_num" : 60} }

将对帖子搜索得到的分数,跟follower_num进行运算,由follower_num在一定程度上增强帖子的分数
看帖子的人越多,那么帖子的分数就越高

GET /forum/article/_search
{
  "query": {
    "function_score": {
      "query": {
        "multi_match": {
          "query": "java spark",
          "fields": ["tile", "content"]
        }
      },
      "field_value_factor": {
        "field": "follower_num",
        "modifier": "log1p",
        "factor": 0.5
      },
      "boost_mode": "sum",
      "max_boost": 2
    }
  }
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值