Elasticsearch实战—ES相关度分数评分算法分析
文章目录
ES相关度评分算法靠三个部分来依次实现,没有先后顺序,是一个逐层推进的逻辑
- Boolean模型 根据过滤条件true,false来过滤doc
- TFIDF模型
- VSM空间向量模型
1.ES相关度分数评分算法
1.1 Booolean
boolean根据搜索条件过滤doc的国车过是不做相关度分数计算的,只是为了标记出来哪些doc是符合搜索条件要求的
1.2 TFIDF模型
了解文档分词处理的都听过TFIDF模型,TF词频,IDF逆文本频率,说白了就是单词term出现了再所有文档中出现了多少次,出现越多,说明这个单词越没有标识度,越不重要,和文档的相关度分数越低
比如下面多个文章ABC中出现多次吃饭,一个文章C中出现一次原子弹,那肯定原子弹肯定对文章C很重要 很有标识度,原子弹这个单词对C来说 权重很高,这就是TFIDF模型
文章DOC A :{ 吃饭, 喝酒, 喝茶}
文章DOC B: {吃饭,原子弹}
文章DOC C:{吃饭, 喝酒}
1.3 VSM空间向量模型
VSM这个就更为专业
- 我们从document出发。document由若干个term组成,通过TF/IDF算法计算后,我们可以得知每一个term在document中的权重,而不同的term又会根据自己的权重影响当前document的相关度得分
- 我们将当前document中出现的所有term的权重组合起来,形成一条向量 Document Vector, Document Vector可能会有多条
- 有了向量可以根据 余弦函数cos计算两个向量的夹角,夹角越大,说明偏离越远,两个向量越不相似,进而得出文章不相似
Document = {term1, term2, …… ,termN}
Document Vector = {weight1, weight2, …… ,weightN}
2.ES相关度分数优化
2.1 准备数据
先构造 index:testquery, 然后构造mapping结构, 插入测试数据
#构建 库index testquer
put /testquery
#构建mapping结构
put /testquery/_mapping
{
"properties" : {
"address" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
},
"copy_to" : [
"info"
]
},
"age" : {
"type" : "long"
},
"area" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"city" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"content" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"deptName" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
},
"fielddata" : true
},
"empId" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"info" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"mobile" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
},
"copy_to" : [
"info"
]
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
},
"copy_to" : [
"info"
]
},
"provice" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
},
"fielddata" : true
},
"salary" : {
"type" : "long"
},
"sex" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"addtime" : {
"type":"date",
//时间格式 epoch_millis表示毫秒
"format":"yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
}
插入测试数据
put /testquery/_bulk
{"index":{"_id": 1},"addtime":"1658041203000"}
{"empId" : "111","name" : "员工1","age" : 20,"sex" : "男","mobile" : "19000001111","salary":1333,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"光谷大道","address":"湖北省武汉市洪山区光谷大厦","content" : "i like to write best elasticsearch article", "addtime":"1658140003000"}
{"index":{"_id": 2}}
{"empId" : "222","name" : "员工2","age" : 25,"sex" : "男","mobile" : "19000002222","salary":15963,"deptName" : "销售部","provice" : "湖北省","city":"武汉","area":"江汉区","address" : "湖北省武汉市江汉路","content" : "i think java is the best programming language"}
{"index":{"_id": 3},"addtime":"1658040045600"}
{ "empId" : "333","name" : "员工3","age" : 30,"sex" : "男","mobile" : "19000003333","salary":20000,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"经济技术开发区","address" : "湖北省武汉市经济开发区","content" : "i am only an elasticsearch beginner"}
{"index":{"_id": 4},"addtime":"1658040012000"}
{"empId" : "444","name" : "员工4","age" : 20,"sex" : "女","mobile" : "19000004444","salary":5600,"deptName" : "销售部","provice" : "湖北省","city":"武汉","area":"沌口开发区","address" : "湖北省武汉市沌口开发区","content" : "elasticsearch and hadoop are all very good solution, i am a beginner"}
{"index":{"_id": 5},"addtime":"1658040593000"}
{ "empId" : "555","name" : "员工5","age" : 20,"sex" : "男","mobile" : "19000005555","salary":9665,"deptName" : "测试部","provice" : "湖北省","city":"高新开发区","area":"武汉","address" : "湖北省武汉市东湖隧道","content" : "spark is best big data solution based on scala ,an programming language similar to java"}
{"index":{"_id": 6},"addtime":"1658043403000"}
{"empId" : "666","name" : "员工6","age" : 30,"sex" : "女","mobile" : "19000006666","salary":30000,"deptName" : "技术部","provice" : "武汉市","city":"湖北省","area":"江汉区","address" : "湖北省武汉市江汉路","content" : "i like java developer","addtime":"1658041003000"}
{"index":{"_id": 7}}
{"empId" : "777","name" : "员工7","age" : 60,"sex" : "女","mobile" : "19000007777","salary":52130,"deptName" : "测试部","provice" : "湖北省","city":"黄冈市","area":"边城区","address" : "湖北省黄冈市边城区","content" : "i like elasticsearch developer","addtime":"1658040008000"}
{"index":{"_id": 8}}
{"empId" : "888","name" : "员工8","age" : 19,"sex" : "女","mobile" : "19000008888","salary":60000,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"汉阳区","address" : "湖北省武汉市江汉大学","content" : "i like spark language","addtime":"1656040003000"}
{"index":{"_id": 9}}
{"empId" : "999","name" : "员工9","age" : 40,"sex" : "男","mobile" : "19000009999","salary":23000,"deptName" : "销售部","provice" : "河南省","city":"郑州市","area":"二七区","address" : "河南省郑州市郑州大学","content" : "i like java developer","addtime":"1608040003000"}
{"index":{"_id": 10}}
{"empId" : "101010","name" : "张湖北","age" : 35,"sex" : "男","mobile" : "19000001010","salary":18000,"deptName" : "测试部","provice" : "湖北省","city":"武汉","area":"高新开发区","address" : "湖北省武汉市东湖高新","content" : "i like java developer i also like elasticsearch","addtime":"1654040003000"}
{"index":{"_id": 11}}
{"empId" : "111111","name" : "王河南","age" : 61,"sex" : "男","mobile" : "19000001011","salary":10000,"deptName" : "销售部",,"provice" : "河南省","city":"开封市","area":"金明区","address" : "河南省开封市河南大学","content" : "i am not like java ","addtime":"1658740003000"}
{"index":{"_id": 12}}
{"empId" : "121212","name" : "张大学","age" : 26,"sex" : "女","mobile" : "19000001012","salary":1321,"deptName" : "测试部",,"provice" : "河南省","city":"开封市","area":"金明区","address" : "河南省开封市河南大学","content" : "i am java developer thing java is good","addtime":"165704003000"}
{"index":{"_id": 13}}
{"empId" : "131313","name" : "李江汉","age" : 36,"sex" : "男","mobile" : "19000001013","salary":1125,"deptName" : "销售部","provice" : "河南省","city":"郑州市","area":"二七区","address" : "河南省郑州市二七区","content" : "i like java and java is very best i like it do you like java ","addtime":"1658140003000"}
{"index":{"_id": 14}}
{"empId" : "141414","name" : "王技术","age" : 45,"sex" : "女","mobile" : "19000001014","salary":6222,"deptName" : "测试部",,"provice" : "河南省","city":"郑州市","area":"金水区","address" : "河南省郑州市金水区","content" : "i like c++","addtime":"1656040003000"}
{"index":{"_id": 15}}
{"empId" : "151515","name" : "张测试","age" : 18,"sex" : "男","mobile" : "19000001015","salary":20000,"deptName" : "技术部",,"provice" : "河南省","city":"郑州市","area":"高新开发区","address" : "河南省郑州高新开发区","content" : "i think spark is good","addtime":"1658040003000"}
2.2 Boost 增加搜索条件权重
设置boost查询条件权重可以实现影响搜索结果评分的目的,比如 查询条件后面加上boost,实现当前条件关联度倍增的效果
#不加boost条件查询
get /testquery/_search
{
"query":{
"bool": {
"should": [
{
"match": {
"provice.keyword": "湖北省"
}
},
{
"match": {
"address": "开发区"
}
}
]
}
}
}
不加条件查询结果
现在给 address地址 加权重boost,认为address包含开发的排名更优先
然后员工4 中address包含开发,分数直接飙升到 12.44
员工1中address并没有开发 两个字,所以address 的 boost对员工1的分数没有影响依旧是 0.344分
2.3 Negative boost 削弱搜索条件权重
设置negative boost 削弱查询条件的权重 可以实现影响搜索结果评分的目的,削弱查询条件对分数的影响
#设置 negative_boost 权重为 1 看下结果
get /testquery/_search
{
"query":{
"boosting": {
"positive": {
"match": {
"provice.keyword": "湖北省"
}
},
"negative": {
"match": {
"deptName.keyword": "销售部"
}
},
"negative_boost": 1
}
}
}
设置 negative_boost 权重为 1 看下结果
员工1:0.344 湖北省技术部
员工2:0.344 湖北省销售部
现在 negative_boost修改为 0.2 看下结果
员工1:0.344 湖北技术部 不受影响,因为他的部门deptname不是销售部,所以削弱销售部的权重不影响他
员工2:0.068 湖北销售部 受影响,分数明显降低,相关度降低
2.4 Function score 自定义相关分数算法
场景:
现在我想把 相关度分数和 文章的浏览量关联起来, 浏览量越大,分数越高,怎么实现
分数算法有几个关键点
- query内部使用 function_score 表明我要使用自定义相关度分数
- function_score内部 使用 field_value_factor 表明参与到分数计算的字段 设置,及按照什么来计算等
- function_score 的 field表示 对哪个字段进行积分
- modifier表示 对哪个字段进行积分 比如 ln, log1p, log2p log 等等算式
- factor 表示 对 你要计算的字段 field 的值 与 factor 相乘 处理
- boost_mode表示 分数 旧分数和新分数 如何处理 累加/减/乘/除/max/min 等等
- max_boost表示 限制计算出来的分数不要超过max_boost指定的值 , 不是最终得分不超过多少
我们下一篇文章 单独讲解一下 如何实现这种场景及 自定义相关度分数算法如何实现, 每个参数都是如何使用的详解
至此 我们已经学习了 ES相关度分数评分算法分析, 也了解了 ES 实现相关度分析底层原理 使用 boolean模型,TFIDF,VSM空间向量模型计算相关度,也会使用 boost, negativeboost 来增加,削弱 查询条件权重 等等
下一篇我们着重讲解下 如何实现自定义算法 function score ES相关度分数评分优化及FunctionScore 自定义相关度分数算法