1.如果某个field进行了分词,那么就没有正排索引,不能进行聚合操作,可以使用两种方式解决
a.利用keyword
b.建立mapping时把fielddata=true 这时候会建立正排索引
POST /test_index/_mapping/my_type
{
"properties": {
"my_field": {
"type": "text",
"fielddata": {
"filter": {
"frequency": {
"min": 0.01,
"min_segment_size": 500
}
}
}
}
}
}
min:仅仅加载至少在1%的doc中出现过的term对应的fielddata
比如说某个值,hello,总共有1000个doc,hello必须在10个doc中出现,那么这个hello对应的fielddata才会加载到内存中来
min_segment_size:少于500 doc的segment不加载fielddata
加载fielddata的时候,也是按照segment去进行加载的,某个segment里面的doc数量少于500个,那么这个segment的fielddata就不加载
1、fielddata核心原理
fielddata加载到内存的过程是lazy加载的,对一个analzyed field执行聚合时,才会加载,而且是field-level加载的
一个index的一个field,所有doc都会被加载,而不是少数doc
不是index-time创建,是query-time创建
2、fielddata内存限制
indices.fielddata.cache.size: 20%,超出限制,清除内存已有fielddata数据
fielddata占用的内存超出了这个比例的限制,那么就清除掉内存中已有的fielddata数据
默认无限制,限制内存使用,但是会导致频繁evict和reload,大量IO性能损耗,以及内存碎片和gc
3、监控fielddata内存使用
GET /_stats/fielddata?fields=*
GET /_nodes/stats/indices/fielddata?fields=*
GET /_nodes/stats/indices/fielddata?level=indices&fields=*
4、circuit breaker
如果一次query load的feilddata超过总内存,就会oom --> 内存溢出
circuit breaker会估算query要加载的fielddata大小,如果超出总内存,就短路,query直接失败
indices.breaker.fielddata.limit:fielddata的内存限制,默认60%
indices.breaker.request.limit:执行聚合的内存限制,默认40%
indices.breaker.total.limit:综合上面两个,限制在70%以内