FZU2214 C - Knapsack problem

本文介绍了一种解决经典背包问题的高效算法。该算法通过动态规划寻找在不超过背包容量限制的情况下,价值总和最大的物品组合。输入包括测试案例数量、物品数量及背包容量等参数,输出则是最大可能的价值总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).

Input

The first line contains the integer T indicating to the number of test cases.

For each test case, the first line contains the integers n and B.

Following n lines provide the information of each item.

The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.

1 <= number of test cases <= 100

1 <= n <= 500

1 <= B, w[i] <= 1000000000

1 <= v[1]+v[2]+...+v[n] <= 5000

All the inputs are integers.

Output

For each test case, output the maximum value.

Sample Input
1
5 15
12 4
2 2
1 1
4 10
1 2
Sample Output
15

B太大,以价值为背包,求最大价值下最小体积,最后价值从大到小遍历dp,如果一旦有容积小于B,则记录价值,break;
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <string.h>
using namespace std;
int dp[5500];
int v[550],w[550];
const int inf=0x3f3f3f3f;
int main()
{
int t,n,m;
    cin>>t;
    while (t--)
    {
     int sum=0,ans=0;
      scanf("%d%d",&n,&m);
      for (int i=1;i<=n;i++)
      {
         scanf("%d%d",&w[i],&v[i]);
         sum+=v[i];
        }
         memset(dp,inf,sizeof(dp));
         dp[0]=0;
       for (int i=1;i<=n;i++)
        for (int j=sum;j>=v[i];j--)
          dp[j]=min(dp[j],dp[j-v[i]]+w[i]);
        for (int i=sum;i>=0;i--)
        {
           if (dp[i]<=m)
           {
             ans=i;
             break;
           }
        }
        cout<<ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值