Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).
The first line contains the integer T indicating to the number of test cases.
For each test case, the first line contains the integers n and B.
Following n lines provide the information of each item.
The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.
1 <= number of test cases <= 100
1 <= n <= 500
1 <= B, w[i] <= 1000000000
1 <= v[1]+v[2]+...+v[n] <= 5000
All the inputs are integers.
For each test case, output the maximum value.
1 5 15 12 4 2 2 1 1 4 10 1 2
15
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <string.h>
using namespace std;
int dp[5500];
int v[550],w[550];
const int inf=0x3f3f3f3f;
int main()
{
int t,n,m;
cin>>t;
while (t--)
{
int sum=0,ans=0;
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
scanf("%d%d",&w[i],&v[i]);
sum+=v[i];
}
memset(dp,inf,sizeof(dp));
dp[0]=0;
for (int i=1;i<=n;i++)
for (int j=sum;j>=v[i];j--)
dp[j]=min(dp[j],dp[j-v[i]]+w[i]);
for (int i=sum;i>=0;i--)
{
if (dp[i]<=m)
{
ans=i;
break;
}
}
cout<<ans<<endl;
}
return 0;
}