ATM Mechine
.
.
解法:dp。设f[i][j]为余额为0~i,剩余警告次数为j,所需要的最小取钱次数。转移可以为f[t-1][j-1]+f[i-t][j]+i+1,即在0~i中选t为划分点,那么对于0~t-1的钱数被警告一次,对于t~i的,即0~i-t个还有j次警告的次数。这个看起来是n^3的,但是其实可以保证读入的w超过了logK是没用的,打表可以看出超过10后答案都是一样的,然后这样dp就可以了
.
.
#include <iostream>
using namespace std;
double f[3000][20] = {0};
int n, m;
int min(int x, int y) {
if (x < y) return x;
return y;
}
int main() {
f[0][1] = 1;
f[1][1] = 2;
for (int i = 2; i <= 2000; i++) f[i][1] = f[i-1][1]+1+i;
for (int k = 2; k <= 20; k++) {
for (int r = 0; r <= 2000; r++) {
f[r][k] = f[r][k-1];
if (k >= r+1) {
continue;
}
for (int t = 1; t <= r; t++) {
f[r][k] = min(f[r][k], f[t-1][k-1]+f[r-t][k]+r+1);
}
}
}
while (scanf("%d %d", &n, &m) != EOF) {
if (m > 20) m = 20;
printf("%.6lf\n", f[n][m]/(double)(n+1));
}
}