Given an integer N, find how many pairs (A, B) are there such that: gcd(A, B) = A xor B where
1 ≤ B ≤ A ≤ N.
Here gcd(A, B) means the greatest common divisor of the numbers A and B. And A xor B is the
value of the bitwise xor operation on the binary representation of A and B.
Input
The first line of the input contains an integer T (T ≤ 10000) denoting the number of test cases. The
following T lines contain an integer N (1 ≤ N ≤ 30000000).
Output
For each test case, print the case number first in the format, ‘Case X:’ (here, X is the serial of the
input) followed by a space and then the answer for that case. There is no new-line between cases.
Sample Input
2 7 20000000
Sample Output
Case 1: 4 Case 2: 34866117
Explanation
Sample 1: For N = 7, there are four valid pairs: (3, 2), (5, 4), (6, 4) and (7, 6).
【题目描述】
给你一个正整数n,问你区间[1, n]中有多少无序数对(a, b)满足gcd(a,b)=a⊕b。
【简要题解】
假设a>b,我们可以观察到
第一个不等式是显然的。
而由于gcd(a,b)|b,gcd(a,b)|b
所以gcd(a,b)|a−b,所以第二个不等式也成立
所以就有gcd(a,b)=a−b
我们可以枚举c=gcd(a,b),再枚举a=c∗i,判断a⊕c是否等于a−c即可
时间复杂度:O(nlogn)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int solve(int n)
{
int ans = 0, e = n >> 1;
for(int c = 1; c <= e; ++c)
for(int a = c << 1; a <= n; a += c)
if((a^c) == a-c) ans++;
return ans;
}
int main()
{
int n; cin >> n;
cout << solve(n) << endl;
return 0;
}