题目
包含整数的二维矩阵 M 表示一个图片的灰度。你需要设计一个平滑器来让每一个单元的灰度成为平均灰度 (向下舍入) ,平均灰度的计算是周围的8个单元和它本身的值求平均,如果周围的单元格不足八个,则尽可能多的利用它们。
示例 1
输入:
[[1,1,1],
[1,0,1],
[1,1,1]]
输出:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
解释:
对于点 (0,0), (0,2), (2,0), (2,2): 平均(3/4) = 平均(0.75) = 0
对于点 (0,1), (1,0), (1,2), (2,1): 平均(5/6) = 平均(0.83333333) = 0
对于点 (1,1): 平均(8/9) = 平均(0.88888889) = 0
注意:
给定矩阵中的整数范围为 [0, 255]。
矩阵的长和宽的范围均为 [1, 150]。
思路
这题没什么技巧,最主要的就是分类,考虑到各种情况。值得注意是当原矩阵只有一行或者只有一列的时候。代码如下:
class Solution:
def imageSmoother(self, M):
"""
:type M: List[List[int]]
:rtype: List[List[int]]
"""
L = []
lens1 = len(M)
lens2 = len(M[0])
if lens1 == 1 and lens2 == 1:
return M
if lens1 == 1 and lens2 > 1:
L0 = []
for i in range(lens2):
if i==0:
sum = M[0][0] + M[0][1]
x = sum // 2
elif i == lens2 - 1:
sum = M[0][i] + M[0][i-1]
x = sum//2
else:
sum = M[0][i] + M[0][i-1] + M[0][i+1]
x = sum//3
L0.append(x)
L.append(L0)
return L
if lens1 > 1 and lens2 == 1:
L0 = []
for i in range(lens1):
if i == 0:
sum = M[0][0] + M[1][0]
x = sum // 2
elif i == lens1 - 1:
sum = M[i][0] + M[i-1][0]
x = sum // 2
else:
sum = M[i][0] + M[i-1][0] + M[i+1][0]
x = sum // 3
L.append([x])
return L
for i in range(lens1):
L1 = []
for j in range(lens2):
if i == 0 and j == 0:
sum = M[1][0] + M[0][1] + M[1][1] + M[0][0]
count = 4
elif i==0 and j != 0 and j != lens2-1:
sum = M[i][j] + M[i+1][j] + M[i][j+1] + M[i][j-1] + M[i+1][j-1] + M[i+1][j+1]
count = 6
elif i==lens1-1 and j != 0 and j != lens2-1:
sum = M[i][j] + M[i-1][j] + M[i][j+1] + M[i][j-1] + M[i-1][j-1] + M[i-1][j+1]
count = 6
elif i==0 and j == lens2-1:
sum = M[i][j] + M[i+1][j] + M[i][j-1] + M[i+1][j-1]
count = 4
elif i != 0 and i != lens1-1 and j == 0:
sum = M[i][j] + M[i][j+1] + M[i-1][j+1] + M[i+1][j+1] + M[i+1][j] + M[i-1][j]
count = 6
elif i != 0 and i != lens1-1 and j == lens2-1:
sum = M[i][j] + M[i][j-1] + M[i+1][j] + M[i-1][j] + M[i-1][j-1] + M[i+1][j-1]
count = 6
elif i == lens1-1 and j == 0:
sum = M[i][j] + M[i][j+1] + M[i-1][j] + M[i-1][j+1]
count = 4
elif i != 0 and i != lens1 - 1 and j != 0 and j != lens2-1:
sum = M[i][j] + M[i+1][j-1] + M[i+1][j] + M[i+1][j+1]
sum = sum + M[i-1][j-1] + M[i-1][j] + M[i-1][j+1] + M[i][j-1] + M[i][j+1]
count = 9
elif i == lens1 - 1 and j == lens2-1:
sum = M[i][j] + M[i-1][j-1] + M[i-1][j] + M[i][j-1]
count = 4
x = sum//count
L1.append(x)
L.append(L1)
return L