K-mean clustering 算法

本文详细介绍了K-Means聚类算法的基本原理及工作流程,并通过Matlab实现提供了具体示例。K-Means算法的目标是将数据集划分为预定义数量的聚类,使得同一聚类内的数据相似度高,而不同聚类间的数据相似度低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-MEANS算法:
  k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
  k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 
  补充一个Matlab实现方法:
  function [cid,nr,centers] = cskmeans(x,k,nc)
  % CSKMEANS K-Means clustering - general method.
  % 
  % This implements the more general k-means algorithm, where 
  % HMEANS is used to find the initial partition and then each
  % observation is examined for further improvements in minimizing
  % the within-group sum of squares.
  %
  % [CID,NR,CENTERS] = CSKMEANS(X,K,NC) Performs K-means
  % clustering using the data given in X. 
  % 
  % INPUTS: X is the n x d matrix of data,
  % where each row indicates an observation. K indicates
  % the number of desired clusters. NC is a k x d matrix for the
  % initial cluster centers. If NC is not specified, then the
  % centers will be randomly chosen from the observations.
  %
  % OUTPUTS: CID provides a set of n indexes indicating cluster
  % membership for each point. NR is the number of observations
  % in each cluster. CENTERS is a matrix, where each row
  % corresponds to a cluster center.
  %
  % See also CSHMEANS
  % W. L. and A. R. Martinez, 9/15/01
  % Computational Statistics Toolbox 
  warning off
  [n,d] = size(x);
  if nargin < 3
  % Then pick some observations to be the cluster centers.
  ind = ceil(n*rand(1,k));
  % We will add some noise to make it interesting.
  nc = x(ind,:) + randn(k,d);
  end
  % set up storage
  % integer 1,...,k indicating cluster membership
  cid = zeros(1,n); 
  % Make this different to get the loop started.
  oldcid = ones(1,n);
  % The number in each cluster.
  nr = zeros(1,k); 
  % Set up maximum number of iterations.
  maxiter = 100;
  iter = 1;
  while ~isequal(cid,oldcid) & iter < maxiter
  % Implement the hmeans algorithm
  % For each point, find the distance to all cluster centers
  for i = 1:n
  dist = sum((repmat(x(i,:),k,1)-nc).^2,2);
  [m,ind] = min(dist); % assign it to this cluster center
  cid(i) = ind;
  end
  % Find the new cluster centers
  for i = 1:k
  % find all points in this cluster
  ind = find(cid==i);
  % find the centroid
  nc(i,:) = mean(x(ind,:));
  % Find the number in each cluster;
  nr(i) = length(ind);
  end
  iter = iter + 1;
  end
  % Now check each observation to see if the error can be minimized some more. 
  % Loop through all points.
  maxiter = 2;
  iter = 1;
  move = 1;
  while iter < maxiter & move ~= 0 
  move = 0;
  % Loop through all points.
  for i = 1:n
  % find the distance to all cluster centers
  dist = sum((repmat(x(i,:),k,1)-nc).^2,2);
  r = cid(i); % This is the cluster id for x
  %%nr,nr+1;
  dadj = nr./(nr+1).*dist'; % All adjusted distances
  [m,ind] = min(dadj); % minimum should be the cluster it belongs to
  if ind ~= r % if not, then move x
  cid(i) = ind;
  ic = find(cid == ind);
  nc(ind,:) = mean(x(ic,:));
  move = 1;
  end
  end
  iter = iter+1;
  end
  centers = nc;
  if move == 0
  disp('No points were moved after the initial clustering procedure.')
  else
  disp('Some points were moved after the initial clustering procedure.')
  end
  warning on
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值