在本篇教程中,将在代码中使用迭代最近点(Iterative Closest Point ,ICP)算法,通过最小化两个点云之间的距离并严格转换它们,可以确定一个点云是否只是另一个点云的严格转换。这里的转换是平移+旋转的空间转换。
算法步骤:
Iterative Closest Point
- Search for correspondences.(搜索对应关系)
- Reject bad correspondences.(剔除差的对应关系)
- Estimate a transformation using the good correspondences.(使用好的对应关系来估算出转换矩阵)
- Iterate.(迭代)
程序代码
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>
int
main(int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out(new pcl::PointCloud<pcl::PointXYZ>);
// 填入点云数据
cloud_in->width = 5;
cloud_in->height = 1;
cloud_in->is_dense = false;
cloud_in->points.resize(cloud_in->width * cloud_in->height);
//使用随机数填充点云
for (size_t i = 0; i < cloud_in->points.size(); ++i)
{
cloud_in->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);
cloud_in->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
cloud_in->points[i].z = 1024 * rand() / (RAND_MAX + 1.0f);
}
//打印创建的点云数据
std::cout << "Saved " << cloud_in->points.size() << " data points to input:"
<< std::endl;
for (size_t i = 0; i < cloud_in->points.size(); ++i) std::cout << " " <<
cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<
cloud_in->points[i].z << std::endl;
//创建第二个点云
*cloud_out = *cloud_in;
std::cout << "size:" << cloud_out->points.size() << std::endl;
for (size_t i = 0; i < cloud_in->points.size(); ++i)
//这里只做了平移变换,所有点的x坐标平移了0.7的距离
cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;
std::cout << "Transformed " << cloud_in->points.size() << " data points:"
<< std::endl;
for (size_t i = 0; i < cloud_out->points.size(); ++i)
std::cout << " " << cloud_out->points[i].x << " " <<
cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;
//创建ICP对象
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
//为ICP算法设置输入点云
icp.setInputCloud(cloud_in);
//设置目标点云
icp.setInputTarget(cloud_out);
//Final为验证的结果
pcl::PointCloud<pcl::PointXYZ> Final;
icp.align(Final);
//打印出验证的结果
std::cout << "Final " << cloud_in->points.size() << " data points:"
<< std::endl;
for (size_t i = 0; i < Final.points.size(); ++i)
std::cout << " " << Final.points[i].x << " " <<
Final.points[i].y << " " << Final.points[i].z << std::endl;
//如果hasConverged() == 1,说明输入点云和目标点云之间的是刚性变换,并返回ICP的评估分数
std::cout << "has converged:" << icp.hasConverged() << " score: " <<
icp.getFitnessScore() << std::endl;
//打印出输入点云和目标点云之间的转换矩阵
std::cout << icp.getFinalTransformation() << std::endl;
return (0);
}
关键代码解析
pcl::PointCloud<pcl::PointXYZ> Final;
icp.align(Final);
std::cout << "has converged:" << icp.hasConverged() << " score: " <<
icp.getFitnessScore() << std::endl;
- 创建一个pcl::PointCloud<pcl::PointXYZ> Final对象, ICP可以在应用算法后将结果点云保存到该对象。
- 如果输入点云和目标点云对齐正确(意味着它们都是同一个点云,只是对其中一个应用了某种严格的转换(刚性变换)),那么icp.hasConverged() = 1 (true)。
- 然后输出最终变换的适应度评分和一些相关信息。
- pcl中的score定义是两份点云之间的误差(error),score越小表示匹配的越准;
实验结果
Saved 5 data points to input:
1.28125 577.094 197.938
828.125 599.031 491.375
358.688 917.438 842.562
764.5 178.281 879.531
727.531 525.844 311.281
size:5
Transformed 5 data points:
1.98125 577.094 197.938
828.825 599.031 491.375
359.388 917.438 842.562
765.2 178.281 879.531
728.231 525.844 311.281
Final 5 data points:
1.28113 577.094 197.938
828.125 599.031 491.375
358.687 917.438 842.562
764.5 178.281 879.531
727.531 525.844 311.281
has converged:1 score: 4.41085
1 4.47035e-07 -4.17233e-07 2.79968
2.68221e-07 1 -3.12925e-07 -0.000610081
-2.38419e-07 -3.27826e-07 1 -0.000122237
0 0 0 1
ICP算法详解
本文介绍了一种用于点云配准的算法——迭代最近点(ICP)算法,并提供了一个简单的C++实现示例。通过该算法,我们可以找到两个点云之间的最佳刚性变换,使得一个点云能够精确地对齐到另一个点云。
356

被折叠的 条评论
为什么被折叠?



