题意:在一张图上有n个点,已知每个点的坐标,部分点已经连接,求将图上所有点连通需要的最短的距离
链接:http://poj.org/problem?id=1751
思路:最小生成树,并查集将已经存在路径的节点进行缩点,在对其他的部分求最小树
注意点:无
以下为AC代码:
Run ID | User | Problem | Result | Memory | Time | Language | Code Length | Submit Time |
14176887 | luminous11 | 1751 | Accepted | 8976K | 719MS | C++ | 4309B | 2015-05-09 10:38:42 |
/*
***********************************************
*# @Author : Luminous11 (573728051@qq.com)
*# @Date : 2015-04-20 23:10:07
*# @Link : http://blog.youkuaiyun.com/luminous11
***********************************************
*/
#include <algorithm>
#include <iostream>
#include <climits>
#include <iomanip>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <deque>
#include <list>
#include <map>
#include <set>
//#include <unordered_map>
//#include <unordered_set>
#define pb push_back
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define READ(f) freopen(f, "r", stdin)
#define WRITE(f) freopen(f, "w", stdout)
#define clr(a, v) memset( a , v , sizeof(a) )
#define RS(s) scanf ( "%s", s )
#define RDI(a) scanf ( "%d", &a )
#define RDII(a, b) scanf ( "%d%d", &a, &b )
#define RDIII(a, b, c) scanf ( "%d%d%d", &a, &b, &c )
#define PL() printf ( "\n" )
#define PI(a) printf ( "%d", a )
#define PIL(a) printf ( "%d\n", a )
#define PSL(s) printf ( "%s\n", s )
#define PII(a,b) printf ( "%d %d", a, b )
#define PIIL(a,b) printf ( "%d %d\n", a, b )
#define PIII(a,b,c) printf ( "%d %d %d", a, b, c )
#define PIIIL(a,b,c) printf ( "%d %d %d\n", a, b, c )
#define rep(i,m,n) for ( int i = m; i < n; i ++ )
#define REP(i,m,n) for ( int i = m; i <= n; i ++ )
#define dep(i,m,n) for ( int i = m; i > n; i -- )
#define DEP(i,m,n) for ( int i = m; i >= n; i -- )
#define repi(i,m,n,k) for ( int i = m; i < n; i += k )
#define REPI(i,m,n,k) for ( int i = m; i <= n; i += k )
#define depi(i,m,n,k) for ( int i = m; i > n; i += k )
#define DEPI(i,m,n,k) for ( int i = m; i >= n; i -= k )
#pragma comment ( linker, "/STACK:10000000,10000000" )
using namespace std;
template <class T>
inline bool RD ( T &ret )
{
char c;
int sgn;
if ( c = getchar(), c ==EOF )return 0; //EOF
while ( c != '-' && ( c < '0' || c > '9' ) ) c = getchar();
sgn = ( c == '-' ) ? -1 : 1;
ret = ( c == '-' ) ? 0 : ( c - '0' );
while ( c = getchar() , c >= '0' && c <= '9' ) ret = ret * 10 + ( c - '0' );
ret *= sgn;
return 1;
}
inline void PD ( int x )
{
if ( x > 9 ) PD ( x / 10 );
putchar ( x % 10 + '0' );
}
const double eps = 1e-10;
// const double pi = acos(-1.0);
const int dir[4][2] = { 1,0, -1,0, 0,1, 0,-1 };
struct node{
int x, y, cnt;
node(){}
node( int _x, int _y ) : x(_x), y(_y) {}
node( int _x, int _y, int _cnt ) : x(_x), y(_y), cnt(_cnt) {}
};
struct edge{
int u, v;
double w;
edge(){}
edge( int _u, int _v, double _w ) : u(_u), v(_v), w(_w) {}
};
int m, n;
int cnt;
node num[751];
edge g[562501];
int fa[751];
bool operator< ( const edge &a, const edge &b )
{
return a.w < b.w;
}
inline edge calc ( int i, int j )
{
int x = num[i].x - num[j].x;
int y = num[i].y - num[j].y;
double dis = sqrt ( (double)(x * x + y * y) );
return edge ( i, j, dis );
}
int find ( int x )
{
if ( x == fa[x] ){
return x;
}
else{
fa[x] = find ( fa[x] );
return fa[x];
}
}
bool merge ( int u, int v )
{
int x = find ( u );
int y = find ( v );
if ( x != y ){
if ( rand() & 1 )
fa[x] = y;
else
fa[y] = x;
return true;
}
return false;
}
void init()
{
cnt = 0;
rep ( i, 0, 751 ) fa[i] = i;
clr ( g, 0 );
clr ( num, 0 );
}
int main()
{
srand((unsigned)time(NULL));
int x, y;
int a, b;
while ( RDI ( m ) != EOF ){
init();
REP ( i, 1, m ){
RDII ( x, y );
num[i] = node ( x, y );
}
REP ( i, 1, m ){
REP ( j, i + 1, m ){
g[cnt++] = calc ( i, j );
}
}
sort ( g, g + cnt );
RDI ( n );
rep ( i, 0, n ){
RDII ( a, b );
merge ( a, b );
}
rep ( i, 0, cnt ){
if ( merge ( g[i].u, g[i].v ) ){
PIIL ( g[i].u, g[i].v );
}
}
}
return 0;
}