具体数学--(求和式的一般形式的几种方法)

UTF8gbsn

How to find the closed form of any formula? We will demonstrate an
example to show seven different methods to achieve this goal.

S n = ∑ 1 ⩽ k ⩽ n k 2 , n ⩾ 0 S_n=\sum_{1\leqslant k\leqslant n}k^2,n\geqslant 0 Sn=1knk2,n0

You could look it up.

There’s several books that you can look it up.

  • Standard Mathematical Tables

  • Handbook of Mathematical Functions

  • Handbook of Integer Sequences

I think google is the first choice of the modern people.

Guess the answer, prove it by induction

It is very difficult to guess the answer, so this method is not
recommended.

Perturb the sum

  • First method

    S n = ∑ i = 1 n i 2 S_n=\sum_{i=1}^{n}i^2 Sn=i=1ni2

    Perturb S n + ( n + 1 ) 2 = ∑ 0 ⩽ k ⩽ n ( k + 1 ) 2 = ∑ 0 ⩽ k ⩽ n k 2 + 2 ∑ 0 ⩽ k ⩽ n k + ∑ 0 ⩽ k ⩽ n 1 = S n + 2 ∑ 0 ⩽ k ⩽ n k + ( n + 1 ) \left. \begin{aligned} S_n+(n+1)^2&=\sum_{0\leqslant k\leqslant n}(k+1)^2=\sum_{0\leqslant k\leqslant n}k^2+2\sum_{0\leqslant k\leqslant n}k+\sum_{0\leqslant k\leqslant n} 1\\ &=S_n+2 \sum_{0\leqslant k\leqslant n}k+(n+1) \end{aligned} \right. Sn+(n+1)2=0kn(k+1)2=0knk2+20knk+0kn1=Sn+20knk+(n+1)

    Finally we can get that
    S n + ( n + 1 ) 2 = S n + 2 ∑ 0 ⩽ k ⩽ n k + ( n + 1 ) S_n+(n+1)^2=S_n+2 \sum_{0\leqslant k\leqslant n}k+(n+1) Sn+(n+1)2=Sn+20knk+(n+1)

    The left S n S_n Sn and right S n S_n Sn cancelled each other which leads to a
    failure of our process. However, we get the solution of
    ( n + 1 ) 2 = 2 ∑ 0 ⩽ k ⩽ n k + ( n + 1 ) ⇒ ∑ 0 ⩽ k ⩽ n k = [ ( n + 1 ) 2 − ( n + 1 ) ] / 2 (n+1)^2=2 \sum_{0\leqslant k\leqslant n}k+(n+1) \Rightarrow \sum_{0\leqslant k\leqslant n}k=[(n+1)^2-(n+1)]/2 (n+1)2=20knk+(n+1)0knk=[(n+1)2(n+1)]/2

    This clue leads to a second method which begin with i 3 i^3 i3.

  • Second Method

    T n = ∑ i = 1 n i 3 T_n=\sum_{i=1}^{n}i^3 Tn=i=1ni3

    Perturb

    T n + ( n + 1 ) 3 = ∑ 0 ⩽ k ⩽ n ( k + 1 ) 3 = ∑ 0 ⩽ k ⩽ n k 3 + 3 ∑ 0 ⩽ k ⩽ n k 2 + 3 ∑ 0 ⩽ k ⩽ n k + ∑ 0 ⩽ k ⩽ 1 = T n + 3 S n + 3 ( n + 1 ) n 2 + ( n + 1 ) \left. \begin{aligned} T_n+(n+1)^3&=\sum_{0\leqslant k\leqslant n}(k+1)^3=\sum_{0\leqslant k\leqslant n} k^3 + 3\sum_{0\leqslant k\leqslant n}k^2+3\sum_{0\leqslant k\leqslant n}k+\sum_{0\leqslant k\leqslant }1\\ &=T_n+3S_n+3 \frac{(n+1)n}{2}+(n+1) \end{aligned} \right. Tn+(n+1)3=0kn(k+1)3=0knk3+30knk2+30knk+0k1=Tn+3Sn+32(n+1)n+(n+1)

    Finally, we get

    3 S n = ( n + 1 ) ( n + 1 2 ) n 3S_n=(n+1)(n+\frac{1}{2})n 3Sn=(n+1)(n+21)n

Build a repertoire

This is a general method. We can assume that the solution to be

R 0 = α R n = R n − 1 + β + γ n + δ n 2 , n > 0 \left. \begin{aligned} R_0&=\alpha\\ R_n&=R_{n-1}+\beta+\gamma n+ \delta n^2,n>0 \end{aligned} \right. R0Rn=α=Rn1+β+γn+δn2,n>0

Now, we have four parameters α , β , γ , δ \alpha,\beta, \gamma, \delta α,β,γ,δ. The closed
form should be

R n = A ( n ) α + B ( n ) β + C ( n ) γ + D ( n ) δ R_n=A(n)\alpha+B(n)\beta+C(n)\gamma+D(n)\delta Rn=A(n)α+B(n)β+C(n)γ+D(n)δ

At this step, our focus is on the A ( n ) , B ( n ) , C ( n ) , D ( n ) A(n), B(n), C(n), D(n) A(n),B(n),C(n),D(n). We will use
special α , β , γ , δ \alpha,\beta,\gamma,\delta α,β,γ,δ to get these
A ( n ) , B ( n ) , C ( n ) , D ( n ) A(n), B(n), C(n), D(n) A(n),B(n),C(n),D(n).

  • A ( n ) A(n) A(n)

    1. Let’s assume that α = 1 , β = 0 , γ = 0 , δ = 0 \alpha=1,\beta=0,\gamma=0,\delta=0 α=1,β=0,γ=0,δ=0
      f ( n ) = A ( n ) , R n = R n − 1 ⇒ R n = R n − 1 = . . . = R 0 = 1 ( R 0 = α = 1 ) f(n)=A(n), R_n=R_{n-1}\Rightarrow R_n=R_{n-1}=...=R_0=1(R_0=\alpha=1) f(n)=A(n),Rn=Rn1Rn=Rn1=...=R0=1(R0=α=1)

    2. Now, we get A ( n ) = 1 \mathbf{A(n)=1} A(n)=1

  • B ( n ) B(n) B(n)

    1. R n = f ( n ) = n R_n=f(n)=n Rn=f(n)=n

    2. n = n − 1 + β + γ n + δ n 2 ⇒ 1 = β + γ n + δ n 2 ⇒ β = 1 , γ = 0 , δ = 0 n=n-1+\beta+\gamma n+\delta n^2 \Rightarrow 1=\beta+\gamma n+\delta n^2 \Rightarrow \beta=1,\gamma=0,\delta=0 n=n1+β+γn+δn21=β+γn+δn2β=1,γ=0,δ=0

    3. f ( n ) = A ( n ) α + B ( n ) β ⇒ f ( n ) = 1 ⋅ α + B ( n ) 1 ⇒ f ( n ) = R n = n = α + B ( n ) f(n)=A(n)\alpha+B(n)\beta \Rightarrow f(n)=1 \cdot \alpha+B(n) 1 \Rightarrow f(n)=R_n=n=\alpha+B(n) f(n)=A(n)α+B(n)βf(n)=1α+B(n)1f(n)=Rn=n=α+B(n)

    4. B ( n ) = n \mathbf{B(n)=n} B(n)=n

  • C ( n ) C(n) C(n)

    1. R n = f ( n ) = n 2 R_n=f(n)=n^2 Rn=f(n)=n2

    2. n 2 = ( n − 1 ) 2 + β + γ n + δ n 2 ⇒ 2 n − 1 = β + γ n + δ n 2 ⇒ β = − 1 , γ = 2 , δ = 0 , α = 0 n^2=(n-1)^2+\beta+\gamma n+\delta n^2 \Rightarrow 2n-1=\beta+\gamma n+\delta n^2 \Rightarrow \beta=-1,\gamma=2,\delta=0, \alpha=0 n2=(n1)2+β+γn+δn22n1=β+γn+δn2β=1,γ=2,δ=0,α=0

    3. f ( n ) = n 2 = 2 C ( n ) − n ⇒ C ( n ) = n 2 + n 2 f(n)=n^2=2C(n)-n \Rightarrow \mathbf{C(n)=\frac{n^2+n}{2}} f(n)=n2=2C(n)nC(n)=2n2+n

  • D ( n ) D(n) D(n)

    1. R n = f ( n ) = n 3 ⇒ 3 D ( n ) = n ( n + 1 2 ) ( n + 1 ) R_n=f(n)=n^3 \Rightarrow \mathbf{3D(n)=n(n+\frac{1}{2})(n+1)} Rn=f(n)=n33D(n)=n(n+21)(n+1)

Finally, we get what we want.

A ( n ) = 1 , B ( n ) = n , C ( n ) = n + n 2 2 , D ( n ) = n ( n + 1 2 ) ( n + 1 ) 3 A(n)=1,B(n)=n,C(n)=\frac{n+n^2}{2},D(n)=\frac{n(n+\frac{1}{2})(n+1)}{3} A(n)=1,B(n)=n,C(n)=2n+n2,D(n)=3n(n+21)(n+1)

After we know A ( n ) , B ( n ) , C ( n ) , D ( n ) A(n),B(n),C(n),D(n) A(n),B(n),C(n),D(n), we can infer
α , β , γ , δ \alpha,\beta,\gamma,\delta α,β,γ,δ for specific problems such as
R 0 = 0 , R n = R n − 1 + n 2 R_0=0,R_n=R_{n-1}+n^2 R0=0,Rn=Rn1+n2.

  1. R 0 = 0 ⇒ R 0 = α = 0 R_0=0 \Rightarrow R_0=\alpha=0 R0=0R0=α=0

  2. R = R n − 1 + n 2 ⇒ β = 0 , γ = 0 , δ = 1 R=R_{n-1}+n^2 \Rightarrow \beta=0,\gamma=0,\delta=1 R=Rn1+n2β=0,γ=0,δ=1

At last, we get

R ( n ) = n ( n + 1 2 ) ( n + 1 ) 3 R(n)=\frac{n(n+\frac{1}{2})(n+1)}{3} R(n)=3n(n+21)(n+1)

Replace sums by integrals

∫ 0 n x 2 d x = 1 3 x 3 ∣ 0 n = 1 3 n 3 \int_{0}^{n}{x^2dx}=\frac{1}{3}x^3|_{0}^{n}=\frac{1}{3}n^3 0nx2dx=31x30n=31n3

S n = ∑ i = 0 n k 2 S_n=\sum_{i=0}^{n}k^2 Sn=i=0nk2

How to calculate S n S_n Sn based on integral?

E n = S n − 1 3 n 3 = S n − 1 + n 2 − 1 3 n 3 , ( S n − 1 = E n − 1 + 1 3 ( n − 1 ) 3 ) E_n=S_n-\frac{1}{3}n^3= S_{n-1}+n^2-\frac{1}{3}n^3,(S_{n-1}=E_{n-1}+\frac{1}{3}(n-1)^3) En=Sn31n3=Sn1+n231n3,(Sn1=En1+31(n1)3)
E n = E n − 1 + 1 3 ( n − 1 ) 3 + n 2 − 1 3 n 3 = E n − 1 + n − 1 3 E_n=E_{n-1}+\frac{1}{3}(n-1)^3+n^2-\frac{1}{3}n^3=E_{n-1}+n-\frac{1}{3} En=En1+31(n1)3+n231n3=En1+n31

From E n = E n − 1 + n − 1 3 E_n=E_{n-1}+n-\frac{1}{3} En=En1+n31, we can get a closed form for E n E_n En,
and when we get the closed form for E n E_n En, we get the closed form for
S n S_n Sn

Another path

E n = S n − ∫ 0 n x 2 d x = ∑ k = 1 n ( k 2 − ∫ k − 1 k x 2 d x ) = ∑ k = 1 n ( k 2 − k 3 − ( k − 1 ) 3 2 ) E_n=S_n-\int_{0}^{n}{x^2dx}=\sum_{k=1}^{n}(k^2-\int_{k-1}^{k}{x^2dx})=\sum_{k=1}^{n}(k^2-\frac{k^{3-(k-1)^3}}{2}) En=Sn0nx2dx=k=1n(k2k1kx2dx)=k=1n(k22k3(k1)3)
E n = ∑ k = 1 n ( k − 1 3 ) E_n=\sum_{k=1}^{n}(k-\frac{1}{3}) En=k=1n(k31)

The same result as previous one.

Convert multiple to sum

S n = ∑ 1 ⩽ k ⩽ n k 2 = ∑ 1 ⩽ j ⩽ k ⩽ n k = ∑ 1 ⩽ j ⩽ n ∑ j ⩽ k ⩽ n k = ∑ 1 ⩽ j ⩽ n ( j + n 2 ) ( n − j + 1 ) = 1 2 ∑ 1 ⩽ j ⩽ n ( n ( n + 1 ) + j − j 2 ) = 1 2 n 2 ( n + 1 ) + 1 4 n ( n + 1 ) − 1 2 S n = 1 2 n ( n + 1 2 ) ( n + 1 ) − 1 2 S n \left. \begin{aligned} S_n&=\sum_{1\leqslant k\leqslant n}k^2=\sum_{1\leqslant j\leqslant k\leqslant n}k\\ &=\sum_{1\leqslant j\leqslant n}\sum_{j\leqslant k\leqslant n}k\\ &=\sum_{1\leqslant j\leqslant n}(\frac{j+n}{2})(n-j+1)\\ &=\frac{1}{2}\sum_{1\leqslant j\leqslant n}(n(n+1)+j-j^2)\\ &=\frac{1}{2}n^2(n+1)+\frac{1}{4}n(n+1)-\frac{1}{2}S_n=\frac{1}{2}n(n+\frac{1}{2})(n+1)-\frac{1}{2}S_n \end{aligned} \right. Sn=1knk2=1jknk=1jnjknk=1jn(2j+n)(nj+1)=211jn(n(n+1)+jj2)=21n2(n+1)+41n(n+1)21Sn=21n(n+21)(n+1)21Sn

At the end of this procedure, we can get S n S_n Sn

Method 7 and 8

7 Use finite calculus. 9 Use generating functions.(The next section.)
加粗样式

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值