Summary of "Unikernal: Rise of the Virtual Library Operating System"

本文围绕虚拟化世界中的库操作系统Mirage OS展开,介绍其三大设计动机,阐述库操作系统理念及优缺点。借助虚拟化技术,引出Unikernel概念,Mirage OS是其实例。还提及实现细节,如用Ocaml编写,编译器输出为Unikernel,具有轻量、易迁移、启动快等优点。

This paper is about Mirage OS, one instance of Library OS in the virtualization world.

 

There are mainly three motivations for Mirage OS:

    1.Currently, in traditional operating system, the software stack has a lot of layers, for instance, libraries necessary for application, TCP/IP stack, file system interface, User-space threads and processes,   And all of these layers sit underneath the application code.  So the author thought, is there any way to reduce the number of layers under the application code?

    2.The transition to single purpose appliances.  In current cloud, usually virtual machines are running a standard operating systems.  Even though such full-fledge system can support many different kind of applications, in most cases virtual machines are launched to work as database or server.  So, this bring the author an opportunity to do optimization.  Firstly, as now each VM only runs one application, the performance of the application can be improved by adapting the setting of VM to its application.  Secondly, if we remove the redundant functionality of standard OS, making our system more light-weight, the attack surfaces would become small, thereby improving security.

    3.The limitation of traditional operating system in virtual world.  First of all, current hypervisor is designed to support dynamic scale both by adding more memory and CPU cores to existing machine and by spawning new virtual machines.  But current system have been designed before such technique came about, like some systems do not support memory hot plug-in.  Secondly, usually an external application-level load balancer is utilized, which spawns more VMs while load spikes. However, the traditional OS is not optimized both for boot time and size.  Therefore, some extra VMs are launched in case of such unpredictable load increases.  But in most of the time, these VMs are idling.  This incurs a wastes of money and computing resources.  Lastly, currently we do not necessary need the function of multiplexing hardware provided by standard OS, because in virtualization world, hardware multiplex is done by hypervisor.   But noted that even though hypervisor provides hardware multiplex, but this is not enough.  We can not just remove the layer of guest operating system which traditionally resides between hypervisor and running applications, as OS also provides some other services necessary for applications, like TCP/IP stacks, and file system interfaces.

 

The idea of Library OS

 

In a nutshell, Library OS is about encapsulating application-specific services which usually provided by OS together, and runs in the applications' address space.  Such application-specific services are not hardware support services, like drivers, file system interfaces.  An example of application-specific services is graphic user interface.  

So using library OS, it is a must to implement such hardware support services.  And noting that now applications are sharing a set of library OS, so a set of policies are necessary to guarantee application isolation.

In the world of Library OS, there is no user mode and kernel mode.  Application can directly access hardware without the transition from user mode to kernel mode.  And there will be no data transfer from user space to kernel space, which improve application performance.

Despite such benefit, the idea of library OS also introduces two intimidating drawbacks.

  1. Isolating applications using the same library OS is very complex.

  2. The implementation of hardware drivers. As we all know, there are tons of different hardware, each of them requires a specific driver.  Writing that many drivers is certainly a tedious work.

 

Unikernel: Library OS in vritualization world  

Fortunately, we are introduced to a brand new world by the virtualization techniques.  Hypervisor provides VMs with CPU time and strongly isolated virtual devices for networking etc, which perfectly solve the aforementioned two drawbacks.  

  1. Isolation can be achieved by launching new VMs.  Each VM  runs only an application, which prevents one application from being messed up with another application.

  2. Hypervisor will take care of writing drivers for various hardware.  And only drivers for virtual hardware are needed on Library OS side.  

 

Unikernel is a system adapting the idea of Library OS.  An application combined with Library OS along with other necessary services forms a Unikernel.  In this paper, the author designed an instance of Unikernel called Mirage OS. 

So, let’s talking about these “other necessary services” now.  These services refer to the necessary services neither provided by hypervisor nor Library OS.  For example, the aforementioned TCP/IP stacks, virtual hardware drivers.  

In traditional OS, these services are usually realized by C (yes, the programming language C), as C excels at low-level programs such as device drivers.   However, C lacks the abstraction facilities of high-level languages and demands careful manual tracking of resources such as memory buffers.  So they decided to use Ocaml.

 

Implementation Details

I don’t bother to mention these details.

But there are few things I’d like to cover:

    1.The output of the compiler would be a Unikernel instead of just an executable file of application.  This unikernel includes application libraries, and all other services required by this application.  And since this Unikernel is supposed to be able to run directly on a VM, so it also has boot support and garbage collector.

    2.Because Ocaml has the attribute of metaprogramming.  So the compiler can optimize the entire Unikernel as a whole.  Such optimization also brings downside.  Because of the optimization, the output binary of complier lacks some blocks of functionality, so any change of the configuration file would result in compiling the entire Unikernel again. 

    3.Also, benefit from the idea of “module” in Ocaml, the Unikernel can be developed at our own computer and then combined with MirageOS shared on GitHub.  

    4.An Unikernel runs only in one virtual address space, the entire Unikernel runs as a process on Hypervisor.  Once this application is done with its job, this VM is terminated.

 

Benefits

Unikernel is light-weight compared with the traditional VM running an application.  So live migration is easy to achieve.  Also, the boot time is very small.  Just a snap of finger, or a blink of eye, many VMs can be launched and ready to serve.

 

 

 

 

 

 

 

 

 

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值