基因选择方法:从微阵列数据到时间序列数据的探索
1. 集成逻辑回归特征选择算法
在处理高维数据的特征选择问题时,集成逻辑回归(Ensemble Logistic Regression,ELR)是一种有效的方法。下面是ELR算法的详细介绍:
Algorithm 1. Ensemble Logistic Regression with Feature Resampling
Algorithm elr
Input: A learning sample X ∈Rn×p and class labels y ∈{−1, 1}n
Input: A regularization parameter λ for estimating a l2-LR model (3)
Output: A vector prob ∈[0, 1]p of feature relevance
Initialize prob according to a t-test ranking
BCR ←0.5
// Default initialization of the average BCR
repeat
Randomly split X into training (80%) and validation (20%)
Draw n out of p features at random according to prob
(w, v) ←a l2-LR model M learned on training restricted to n features
Compute BCR of M on validation
quality
超级会员免费看
订阅专栏 解锁全文
20

被折叠的 条评论
为什么被折叠?



