import tensorflow as tf
input_value = tf.constant(0.5,name="input_value")
weight = tf.Variable(1.0,name="weight")
expected_output = tf.constant(0.0,name="expected_output")
model = tf.multiply(input_value,weight,"model")
loss_function =tf.pow(expected_output - model,2,name="loss_function")
optimizer =tf.train.GradientDescentOptimizer(0.025).minimize(loss_function)
for value in [input_value,weight,expected_output,model,loss_function]:
tf.summary.scalar(value.op.name,value)
Each value to display is passed to tf.scalar_summary function. It provides the following two arguments:
- value.op.name: This is a tag for the summary.
- value: A real numeric tensor. This is a value for the summary.
summaries = tf.summary.merge_all()
sess = tf.Session()
summary_writer = tf.summary.FileWriter('log_simple_stats',sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(100):
summary_writer.add_summary(sess.run(summaries),i)
sess.run(optimizer)
After running the code, we can see the log file created with TensorBoard. Running the TensorBoard is very simple; open a terminal and digit the following:
- $tensorboard –logdir= log_simple_stats