TensorBoard

import tensorflow as tf
input_value = tf.constant(0.5,name="input_value")
weight = tf.Variable(1.0,name="weight")
expected_output = tf.constant(0.0,name="expected_output")
model = tf.multiply(input_value,weight,"model")
loss_function =tf.pow(expected_output - model,2,name="loss_function")
optimizer =tf.train.GradientDescentOptimizer(0.025).minimize(loss_function)
for value in [input_value,weight,expected_output,model,loss_function]:
    tf.summary.scalar(value.op.name,value)
Each value to display is passed to tf.scalar_summary function. It provides the following two arguments:

  • value.op.name: This is a tag for the summary.
  • value: A real numeric tensor. This is a value for the summary.
summaries = tf.summary.merge_all()
sess = tf.Session()
summary_writer = tf.summary.FileWriter('log_simple_stats',sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(100):
    summary_writer.add_summary(sess.run(summaries),i)
    sess.run(optimizer)

After running the code, we can see the log file created with TensorBoard. Running the TensorBoard is very simple; open a terminal and digit the following:

  • $tensorboard –logdir= log_simple_stats
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值