00代码来源
# tensorflow64 《深度学习原理与TensorFlow实战》04 CNN看懂世界 01 alexnet_benchmark.py
#《深度学习原理与TensorFlow实战》04 CNN看懂世界
# 书源码地址:https://github.com/DeepVisionTeam/TensorFlowBook.git
# 视频讲座地址:http://edu.youkuaiyun.com/course/detail/5222
# win10 Tensorflow-gpu1.2.0 python3.6.1
# CUDA v8.0 cudnn-8.0-windows10-x64-v5.1
# https://github.com/tensorflow/models/blob/master/tutorials/image/alexnet/alexnet_benchmark.py
01 alexnet_benchmark.py
"""Timing benchmark for AlexNet inference.
To run, use:
bazel run -c opt --config=cuda \
models/tutorials/image/alexnet:alexnet_benchmark
Across 100 steps on batch size = 128.
Forward pass:
Run on Tesla K40c: 145 +/- 1.5 ms / batch
Run on Titan X: 70 +/- 0.1 ms / batch
Forward-backward pass:
Run on Tesla K40c: 480 +/- 48 ms / batch
Run on Titan X: 244 +/- 30 ms / batch
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from datetime import datetime
import math
import sys
import time
from six.moves import xrange
import tensorflow as tf
FLAGS = None
def print_activations(t):
print(t.op.name, ' ', t.get_shape().as_list())
def inference(images):
"""Build the AlexNet model.
Args:
images: Images Tensor
Returns:
pool5: the last Tensor in the convolutional component of AlexNet.
parameters: a list of Tensors corresponding to the weights and biases of the
AlexNet model.
"""
parameters = []
with tf.name_scope('conv1') as scope:
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
print_activations(conv1)
parameters += [kernel, biases]
pool1 = tf.nn.max_pool(conv1,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool1')
print_activations(pool1)
with tf.name_scope('conv2') as scope:
kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv2)
pool2 = tf.nn.max_pool(conv2,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool2')
print_activations(pool2)
with tf.name_scope('conv3') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv3)
with tf.name_scope('conv4') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv4)
with tf.name_scope('conv5') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv5)
pool5 = tf.nn.max_pool(conv5,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool5')
print_activations(pool5)
return pool5, parameters
def time_tensorflow_run(session, target, info_string):
"""Run the computation to obtain the target tensor and print timing stats.
Args:
session: the TensorFlow session to run the computation under.
target: the target Tensor that is passed to the session's run() function.
info_string: a string summarizing this run, to be printed with the stats.
Returns:
None
"""
num_steps_burn_in = 10
total_duration = 0.0
total_duration_squared = 0.0
for i in xrange(FLAGS.num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target)
duration = time.time() - start_time
if i >= num_steps_burn_in:
if not i % 10:
print ('%s: step %d, duration = %.3f' %
(datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / FLAGS.num_batches
vr = total_duration_squared / FLAGS.num_batches - mn * mn
sd = math.sqrt(vr)
print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(), info_string, FLAGS.num_batches, mn, sd))
def run_benchmark():
"""Run the benchmark on AlexNet."""
with tf.Graph().as_default():
image_size = 224
images = tf.Variable(tf.random_normal([FLAGS.batch_size,
image_size,
image_size, 3],
dtype=tf.float32,
stddev=1e-1))
pool5, parameters = inference(images)
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
sess = tf.Session(config=config)
sess.run(init)
time_tensorflow_run(sess, pool5, "Forward")
objective = tf.nn.l2_loss(pool5)
grad = tf.gradients(objective, parameters)
time_tensorflow_run(sess, grad, "Forward-backward")
def main(_):
run_benchmark()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--batch_size',
type=int,
default=128,
help='Batch size.'
)
parser.add_argument(
'--num_batches',
type=int,
default=100,
help='Number of batches to run.'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
'''
conv1 [128, 56, 56, 64]
pool1 [128, 27, 27, 64]
conv2 [128, 27, 27, 192]
pool2 [128, 13, 13, 192]
conv3 [128, 13, 13, 384]
conv4 [128, 13, 13, 256]
conv5 [128, 13, 13, 256]
pool5 [128, 6, 6, 256]
2017-07-02 18:25:40.026291: step 0, duration = 0.122
2017-07-02 18:25:41.258569: step 10, duration = 0.123
2017-07-02 18:25:42.491848: step 20, duration = 0.123
2017-07-02 18:25:43.724125: step 30, duration = 0.123
2017-07-02 18:25:44.955401: step 40, duration = 0.122
2017-07-02 18:25:46.188680: step 50, duration = 0.123
2017-07-02 18:25:47.421769: step 60, duration = 0.123
2017-07-02 18:25:48.654050: step 70, duration = 0.123
2017-07-02 18:25:49.886324: step 80, duration = 0.123
2017-07-02 18:25:51.119603: step 90, duration = 0.123
2017-07-02 18:25:52.229561: Forward across 100 steps, 0.123 +/- 0.000 sec / batch
2017-07-02 18:25:57.698099: step 0, duration = 0.361
2017-07-02 18:26:01.337777: step 10, duration = 0.365
2017-07-02 18:26:04.978460: step 20, duration = 0.366
2017-07-02 18:26:08.616135: step 30, duration = 0.364
2017-07-02 18:26:12.251802: step 40, duration = 0.362
2017-07-02 18:26:15.894489: step 50, duration = 0.362
2017-07-02 18:26:19.539183: step 60, duration = 0.364
2017-07-02 18:26:23.180868: step 70, duration = 0.366
2017-07-02 18:26:26.817528: step 80, duration = 0.363
2017-07-02 18:26:30.443657: step 90, duration = 0.363
2017-07-02 18:26:33.723378: Forward-backward across 100 steps, 0.364 +/- 0.002 sec / batch
'''