CAN高速通信(含简单程序实战)

声明

本文是b站中科大电控的学习笔记,也可供大家参考学习

通信相关基础知识

CAN通信的分层

不同层分工不同,抽象层级不同

可以理解为:

1. 物理信号层  2.链路传输层  3.应用数据层

CAN通信的接线方法

一根CAN-H,一根CAN-L,通过120欧姆的电阻接入

传输方式

利用差分信号,减少外界噪音的干扰(看的是两条线之间的电压差)

编码1是两者电平相同,一般都是2.5

编码0是两者电平不同,一般是3.5和1.5 

区分:比特率与波特率

比特率是传输的二进制码元数量

波特率是传输的有效码元的数量(与进制有关)

如果一秒传输1000个字符,每个字符对应一种唯一的电平信号,那么波特率就是1000symbol/s;由于一个十六进制字符要用四位二进制编码表示,那么它的比特率就是4000bit/s

CAN通信的不同分段

收发模式

1.常规模式(向总线发送和接收)

2.回环模式(向总线和本机发送/不从总线接收仅从本机接受)

3.静默模式(不向总线发送,仅向本机发送/从总线和本机接收)

3.回环静默模式(不向总线发送/不从总线接收)

链路传输

地址(CAN ID)

CAN 设备不存在固定的地址 

冲突检测和避免

当大家都需要传输信号,CAN采用冲突检测

0是显性电平

误码校验

防止传输过程中的物理误差

CAN采用CRC校验

滤波器与掩码

滤波器负责过滤和通过

CAN通信帧(标准帧)

起始段:标志着帧的开始,为显性电平0(平时为1)

仲裁段:包含11bit的CAN ID,ID越大优先级越低

               还包含一个RTR,1bit,显性电平为数据帧,隐形电平为遥控帧

控制段:扩展帧格式标记,显性电平为标准数据帧,隐形电平为扩展帧

               保留位0

                数据字节的长度数(单位是字节)

数据段:数据内容

校验段:crc校验码15位

               crc结束码1

回复段:由接收设备显示显性电平位为正常接收

               ack界定符,标志ack结束,为隐性电平1

结束段:标志帧结束,为隐形电平1(1bit)

CubeMX配置与程序编写

cubemx配置

配置GPIO和时钟

写自收自发的can通信,先配置8个输出的LED引脚,分别是PG1-8        

配置相关时钟

配置CAN

PD0和PD1可以配置can,选用PD0和PD1

相位缓冲段就是BIT SEGMENT 的大小        

主程序

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "can.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

// 滤波器编号
#define CAN_FILTER(x) ((x) << 3)

// 接收队列
#define CAN_FIFO_0 (0 << 2)
#define CAN_FIFO_1 (1 << 2)

//标准帧或扩展帧
#define CAN_STDID (0 << 1)
#define CAN_EXTID (1 << 1)

// 数据帧或遥控帧
#define CAN_DATA_TYPE (0 << 0)
#define CAN_REMOTE_TYPE (1 << 0)

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/**
 * @brief 初始化CAN总线
 *
 * @param hcan CAN编号
 * @param Callback_Function 处理回调函数
 */
void CAN_Init(CAN_HandleTypeDef *hcan)
{
  HAL_CAN_Start(hcan);
  __HAL_CAN_ENABLE_IT(hcan, CAN_IT_RX_FIFO0_MSG_PENDING);
  __HAL_CAN_ENABLE_IT(hcan, CAN_IT_RX_FIFO1_MSG_PENDING);
}

/**
 * @brief 配置CAN的滤波器
 *
 * @param hcan CAN编号
 * @param Object_Para 编号 | FIFOx | ID类型 | 帧类型
 * @param ID ID
 * @param Mask_ID 屏蔽位(0x3ff, 0x1fffffff)
 */
void CAN_Filter_Mask_Config(CAN_HandleTypeDef *hcan, uint8_t Object_Para, uint32_t ID, uint32_t Mask_ID)
{
  CAN_FilterTypeDef can_filter_init_structure;

  // 检测关键传参
  assert_param(hcan != NULL);

  if ((Object_Para & 0x02))
  {
    // 标准帧
    // 掩码后ID的高16bit
    can_filter_init_structure.FilterIdHigh = ID << 3 >> 16;
    // 掩码后ID的低16bit
    can_filter_init_structure.FilterIdLow = ID << 3 | ((Object_Para & 0x03) << 1);
    // ID掩码值高16bit
    can_filter_init_structure.FilterMaskIdHigh = Mask_ID << 3 << 16;
    // ID掩码值低16bit
    can_filter_init_structure.FilterMaskIdLow = Mask_ID << 3 | ((Object_Para & 0x03) << 1);
  }
  else
  {
    // 扩展帧
    // 掩码后ID的高16bit
    can_filter_init_structure.FilterIdHigh = ID << 5;
    // 掩码后ID的低16bit
    can_filter_init_structure.FilterIdLow = ((Object_Para & 0x03) << 1);
    // ID掩码值高16bit
    can_filter_init_structure.FilterMaskIdHigh = Mask_ID << 5;
    // ID掩码值低16bit
    can_filter_init_structure.FilterMaskIdLow = ((Object_Para & 0x03) << 1);
  }

  // 滤波器序号, 0-27, 共28个滤波器, can1是0~13, can2是14~27
  can_filter_init_structure.FilterBank = Object_Para >> 3;
  // 滤波器绑定FIFOx, 只能绑定一个
  can_filter_init_structure.FilterFIFOAssignment = (Object_Para >> 2) & 0x01;
  // 使能滤波器
  can_filter_init_structure.FilterActivation = ENABLE;
  // 滤波器模式, 设置ID掩码模式
  can_filter_init_structure.FilterMode = CAN_FILTERMODE_IDMASK;
  // 32位滤波
  can_filter_init_structure.FilterScale = CAN_FILTERSCALE_32BIT;
    //从机模式选择开始单元
  can_filter_init_structure.SlaveStartFilterBank = 14;

  HAL_CAN_ConfigFilter(hcan, &can_filter_init_structure);
}

/**
 * @brief 发送数据帧
 *
 * @param hcan CAN编号
 * @param ID ID
 * @param Data 被发送的数据指针
 * @param Length 长度
 * @return uint8_t 执行状态
 */
uint8_t CAN_Send_Data(CAN_HandleTypeDef *hcan, uint16_t ID, uint8_t *Data, uint16_t Length)
{
  CAN_TxHeaderTypeDef tx_header;
  uint32_t used_mailbox;

  // 检测关键传参
  assert_param(hcan != NULL);

  tx_header.StdId = ID;
  tx_header.ExtId = 0;    //扩展帧ID
  tx_header.IDE = 0;      //是否是扩展帧(标准帧0,扩展帧1)
  tx_header.RTR = 0;      //是否遥控帧(数据帧0,遥控帧1)
  tx_header.DLC = Length; //数据长度

  return (HAL_CAN_AddTxMessage(hcan, &tx_header, Data, &used_mailbox));
}


/**
 * @brief 点灯
 *
 * @param data 收到的数据
 */
void LED_Control(uint8_t data)
{
  HAL_GPIO_WritePin(GPIOG, GPIO_PIN_1, ((data & 1) == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOG, GPIO_PIN_2, ((data & 2) == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOG, GPIO_PIN_3, ((data & 4) == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOG, GPIO_PIN_4, ((data & 8) == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOG, GPIO_PIN_5, ((data & 16) == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOG, GPIO_PIN_6, ((data & 32) == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOG, GPIO_PIN_7, ((data & 64) == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOG, GPIO_PIN_8, ((data & 128) == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
}

/**
 * @brief HAL库CAN接收FIFO1中断
 *
 * @param hcan CAN编号
 */
void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
  CAN_RxHeaderTypeDef header;
  uint8_t data;

  HAL_CAN_GetRxMessage(hcan, CAN_FILTER_FIFO1, &header, &data);
  
  LED_Control(data);
}

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_CAN1_Init();
  /* USER CODE BEGIN 2 */

  uint8_t Send_Data = 0;

  CAN_Init(&hcan1);
  CAN_Filter_Mask_Config(&hcan1, CAN_FILTER(13) | CAN_FIFO_1 | CAN_STDID | CAN_DATA_TYPE, 0x114, 0x7ff);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    Send_Data++;
    CAN_Send_Data(&hcan1, 0x114, &Send_Data, 1);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    HAL_Delay(250);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 6;
  RCC_OscInitStruct.PLL.PLLN = 180;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Activate the Over-Drive mode
  */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值