题目;
Given a string, find the length of the longest substring without repeating characters.
Examples:
Given "abcabcbb"
, the answer is "abc"
, which the length is 3.
Given "bbbbb"
, the answer is "b"
, with the length of 1.
Given "pwwkew"
, the answer is "wke"
, with the length of 3. Note that the answer must be a substring, "pwke"
is a subsequence and not a substring.
首先自己的解法,强行整了动态规划,dp[i]表示s[0...i]的最长无重复子串,时间复杂度O(n*n),很高
public int lengthOfLongestSubstring(String s) {
if(s==null || s.length()==0) //注意特殊情况处理
return 0;
int curLen = 0;
int max = 0;
int len = s.length();
int dp[] = new int[len];
dp[0] = 1;
Set<Character> set = new HashSet<Character>();
for (int i = 1; i < s.length(); i++) {
int j = 0;
for(j=i;j>=0;j--) {
if(!set.contains(s.charAt(j))) {
set.add(s.charAt(j));
} else {
dp[i] = Math.max(dp[i-1], set.size());
set.clear();
break;
}
}
if(j<0) {
dp[i] = i+1;
}
}
for(int t : dp) {
max = max<t ? t : max;
}
return max;
}
public class Solution { public int lengthOfLongestSubstring(String s) { int n = s.length(); Set<Character> set = new HashSet<>(); int ans = 0, i = 0, j = 0; while (i < n && j < n) { // try to extend the range [i, j] if (!set.contains(s.charAt(j))){ set.add(s.charAt(j++)); ans = Math.max(ans, j - i); } else { set.remove(s.charAt(i++)); } } return ans; } }O(n)解法
public class Solution { public int lengthOfLongestSubstring(String s) { int n = s.length(), ans = 0; Map<Character, Integer> map = new HashMap<>(); // current index of character // try to extend the range [i, j] for (int j = 0, i = 0; j < n; j++) { if (map.containsKey(s.charAt(j))) { i = Math.max(map.get(s.charAt(j)), i); } ans = Math.max(ans, j - i + 1); map.put(s.charAt(j), j + 1); } return ans; } }Assuming ASCII 128:数组替换hash表
public class Solution { public int lengthOfLongestSubstring(String s) { int n = s.length(), ans = 0; int[] index = new int[128]; // current index of character // try to extend the range [i, j] for (int j = 0, i = 0; j < n; j++) { i = Math.max(index[s.charAt(j)], i); ans = Math.max(ans, j - i + 1); index[s.charAt(j)] = j + 1; } return ans; } }