几个zero-shot-classification 中文模型的比较

 zero-shot-classification里面有好几个中文模型,怎么知道哪个模型最好,下面是我对于最简单的问题进行的测试

1、facebook/bart-large-mnli

  • 模型特点facebook/bart-large-mnli 是一个多任务学习模型,基于 BART 结构,并在多语言推理任务上进行了训练(包括中文)。它支持零样本分类任务,能够根据给定的文本和标签,预测哪个标签最符合文本内容。
  • 适用场景:适用于意图识别、文本分类等任务,尤其是在标签集合较大的情况下。
  • 运行结果如下
  • 模型有1.6G,结果0.33XX 

2、uer/roberta-base-chinese-extractive-qa

  • 模型特点uer/roberta-base-chinese-extractive-qa 是 RoBERTa 的中文版本,适用于文本理解任务,包括提取式问答和分类。虽然它专注于问答任务,但也可以通过零样本分类方法用于意图识别。
  • 适用场景:适用于基于 RoBERTa 的中文意图识别、问答系统等。
    classifier = pipeline("zero-shot-classification", model="uer/roberta-base-chinese-extractive-qa")
    text = "嗯"
    labels = ["同意", "不同意", "不知道"]
    result = classifier(text, labels)
    print(result)

    也是 0.33左右

3、IDEA-CCNL/Erlangshen-Roberta-110M-NLI

  • 模型特点Erlangshen-Roberta-110M-NLI 是由 IDEA-CCNL 提供的一个中文 RoBERTa 变种模型,专门针对中文自然语言推理任务(NLI)进行了优化。它能够在没有训练的情况下处理零样本分类任务,适用于中文意图识别等任务。
  • 适用场景:非常适合中文的意图识别、情感分析、文本分类等任务。
  • from transformers import pipeline
    classifier = pipeline("zero-shot-classification", model="IDEA-CCNL/Erlangshen-Roberta-110M-NLI")
    text = "嗯"
    labels = ["同意", "不同意", "不知道"]
    result = classifier(text, labels)
    print(result)

  • 0.83 的识别率,很高

   

### Zero-Shot Learning Chain in Machine Learning and NLP Applications Zero-shot learning (ZSL) refers to the ability of a model to make accurate predictions about previously unseen classes or data points without any explicit training on these specific instances. In the context of natural language processing (NLP), zero-shot capabilities allow models to understand and generate responses for tasks they have not been specifically trained on, leveraging pre-existing knowledge from related domains. #### Conceptual Overview In traditional supervised learning scenarios, models require labeled datasets corresponding directly to each task at hand. However, with zero-shot approaches, especially within chains or sequences of operations, models can generalize across different types of inputs by relying on abstract reasoning skills learned during initial training phases[^1]. This characteristic is particularly valuable when dealing with rapidly evolving application areas where new categories emerge frequently but obtaining sufficient annotated samples might be challenging. For instance, consider an intelligent assistant that needs to respond appropriately even if it encounters novel user queries outside its original dataset; this would involve chaining together multiple components such as intent recognition, entity extraction, dialogue management—all operating under a unified framework capable of handling unknown elements effectively. #### Practical Implementation Example To demonstrate how one could implement a zero-shot chain using modern large language models like those mentioned earlier which tend towards being closed-source[^3], here’s a simplified Python code snippet demonstrating interaction between two hypothetical modules: ```python from langchain import LangChainModel # Hypothetical API-based access point def perform_zero_shot_task(input_text): """ Demonstrates performing a zero-shot operation utilizing chained services. Args: input_text (str): Input string provided by end-user requiring analysis. Returns: dict: Dictionary containing results after passing through various stages. """ # Initialize service clients based on available APIs classifier_client = LangChainModel(api_key="your_api_key", endpoint="/classify") generator_client = LangChainModel(api_key="your_api_key", endpoint="/generate") classification_result = classifier_client.predict(text=input_text) generated_response = generator_client.generate(prompt=classification_result['label']) return { "input": input_text, "predicted_class": classification_result["label"], "response": generated_response } ``` This example shows how easily adaptable systems built around composability principles can handle diverse requests while maintaining flexibility regarding underlying technologies used—whether open source or proprietary solutions accessed via web interfaces. --related questions-- 1. How does prompt engineering influence performance in zero-shot settings? 2. What are some common challenges faced when implementing real-world applications involving zero-shot learning chains? 3. Can you provide examples of industries benefiting most significantly from adopting zero-shot methodologies? 4. Are there particular architectural designs better suited than others for supporting efficient implementation of zero-shot workflows?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

livepy

老码农,赋闲在家要吃饭

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值