Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
思路:
我们要将∣Ai−1Si−2∣\begin{vmatrix}A^{i-1}&S_{i-2}\end{vmatrix}∣∣Ai−1Si−2∣∣转移到∣AiSi−1∣\begin{vmatrix}A^{i}&S_{i-1}\end{vmatrix}∣∣AiSi−1∣∣
那么就是∣Ai−1+ASi−2+Ai−1∣\begin{vmatrix}A^{i-1}+A&S_{i-2}+A^{i-1}\end{vmatrix}∣∣Ai−1+ASi−2+Ai−1∣∣
所以转移矩阵就是∣A101∣\begin{vmatrix}A&1\\0&1\end{vmatrix}∣∣∣∣A011∣∣∣∣
code:
#include<iostream>
#include<cstdio>
using namespace std;
long long n, m, p;
long long a[900][900];
long long ans[900][900];
long long b[900][900];
void multi()
{
long long c[100][100];
for(long long i=1; i<=n*2; i++)
for(long long j=1; j<=n*2; j++)
c[i][j]=0;
for(long long i=1; i<=n*2; i++)
for(long long j=1; j<=n*2; j++)
for(long long k=1; k<=n*2; k++)
c[i][j]=(c[i][j]+a[i][k]*ans[k][j])%p;
for(long long i=1; i<=n*2; i++)
for(long long j=1; j<=n*2; j++)
ans[i][j]=c[i][j];
}
void multi1()
{
long long c[100][100];
for(long long i=1; i<=n*2; i++)
for(long long j=1; j<=n*2; j++)
c[i][j]=0;
for(long long i=1; i<=n*2; i++)
for(long long j=1; j<=n*2; j++)
for(long long k=1; k<=n*2; k++)
c[i][j]=(c[i][j]+a[i][k]*a[k][j])%p;
for(long long i=1; i<=n*2; i++)
for(long long j=1; j<=n*2; j++)
a[i][j]=c[i][j];
}
void ksm(long long k)
{
for(long long i=1; i<=n*2; i++)
ans[i][i]=1;
while(k!=0)
{
if(k&1)
multi();
multi1();
k>>=1;
}
}
void multi2()
{
long long c[100][100];
for(long long i=1; i<=n*2; i++)
for(long long j=1; j<=n*2; j++)
c[i][j]=0;
for(long long i=1; i<=n; i++)
for(long long j=1; j<=n*2; j++)
for(long long k=1; k<=n*2; k++)
c[i][j]=(c[i][j]+b[i][k]*ans[k][j])%p;
for(long long i=1; i<=n; i++)
for(long long j=1; j<=n*2; j++)
b[i][j]=c[i][j];
}
int main()
{
scanf("%lld%lld%lld", &n, &m, &p);
for(long long i=1; i<=n; i++)
for(long long j=1; j<=n; j++)
scanf("%lld", &a[i][j]), b[i][j]=a[i][j];
for(long long i=1; i<=n; i++)
for(long long j=n+1; j<=n*2; j++)
if(i+n==j)
a[i][j]=1;
for(long long i=n+1; i<=n*2; i++)
for(long long j=n+1; j<=n*2; j++)
if(i==j)
a[i][j]=1;
ksm(m);
multi2();
for(long long i=1; i<=n; i++, cout<<endl)
for(long long j=n+1; j<=n*2; j++)
printf("%lld ", b[i][j]);
return 0;
}
博客围绕给定 n × n 矩阵 A 和正整数 k,求 S = A + A2 + A3 + … + Ak 展开。介绍了输入包含 n、k、m 及矩阵 A 元素,输出 S 各元素模 m 的结果。给出了从 ∣∣Ai−1Si−2∣∣ 转移到 ∣∣AiSi−1∣∣ 的思路及转移矩阵。
2750

被折叠的 条评论
为什么被折叠?



