hdu 1165 递推

本文介绍Ackermann函数的基础概念及其递归定义,并通过分析不同参数情况下函数的行为特点,提供了一种有效的计算方法。针对特定的数据范围,给出了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

As is known, Ackermann function plays an important role in the sphere of theoretical computer science. However, in the other hand, the dramatic fast increasing pace of the function caused the value of Ackermann function hard to calcuate.

Ackermann function can be defined recursively as follows:


Now Eddy Gives you two numbers: m and n, your task is to compute the value of A(m,n) .This is so easy problem,If you slove this problem,you will receive a prize(Eddy will invite you to hdu restaurant to have supper).


其实就是给出这样一个表达式,给出m、n得到A(m,n)的值。



这个是数据范围:

Each line of the input will have two integers, namely m, n, where 0 < m < =3.
Note that when m<3, n can be any integer less than 1000000, while m=3, the value of n is restricted within 24. 



一道递推问题,具体看代码。


/*
m=0时:
A(0,n) = n+1 ;

m=1时:
A(1,n) = A(1-1,A(1,n-1)) = A(0,A(1,n-1))
= A(1,n-1)+1 =  A(0,A(1,n-2) +1 = A(1,n-2)+ 2 = ...
= A(1,n-n)+ n  = A(1,0) + n = A(0,1)+n = n+2 ;

m=2时:
A(2,n) = A(1,A(2,n-1)) = A(2,n-1)+2 =
A(1,A(2,n-2))+2 = A(2,n-2)+2*2 = ... =
A(2,n-n)+2*n = A(2,0)+2*n =
A(1,1)+2*n = 2*n +3 ;

m=3时:直接递归求解就可以了
也可以这样先递推一下再来,A(3,m) = A(2,A(3,n-1)) = 2*A(3,(n-1)) + 3 ;

*/



#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define inf 100000005

int const maxn = 1000005 ;

long long cal(int m,int n)
{
    if(m==0)return n+1;
    if(m==1)return n+2;
    if(m==2)return 2*n+3 ;
    if(m>0&&n==0)return cal(m-1,1);
    if(m>0&&n>0)return cal(m-1,cal(m,n-1));
}

int main()
{
    int m,n;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        if(m==3)printf("%I64d\n",cal(m,n));
        else if(m==1)printf("%d\n",n+2);
        else if(m==0)printf("%d\n",n+1);
        else if(m==2)printf("%d\n",2*n+3);
    }
    return 0 ;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值