OTC

OTC(场外交易市场,又称柜台交易市场),和交易所市场完全不同,OTC没有固定的场所,没有规定的成员资格,没有严格可控的规则制度,没有规定的交易产品和限制,主要是交易对手通过私下协商进行的一对一的交易。场外交易主要在金融业,特别是银行等金融机构十分发达的国家。
  现时最大的OTC市场在新加坡,除了提供各类外汇,指数和期货交易外,还有摩根斯坦利的台湾,香港等参考指数以供投资。在欧洲的OTC交易,比传统交易所的交易发展更为蓬勃,成为现代的投资新宠儿。
  OTC方式与撮合方式的差异主要表现在:一是信用基础不同,OTC方式以交易双方的信用为基础,由交易双方自行承担信用风险,需要建立双边授信后才可进行交易,而撮合方式中各交易主体均以中国外汇交易中心为交易对手方,交易中心集中承担了市场交易者的信用风险;二是价格形成机制不同,OTC方式由交易双方协商确定价格,而撮合方式通过计算机撮合成交形成交易价格;三是清算安排不同,OTC方式由交易双方自行安排资金清算,而撮合方式由中国外汇交易中心负责集中清算。
### OTC Ranking Algorithm Overview In the context of information retrieval and natural language processing, OTC (One-Type-Context) ranking algorithms focus on improving query-specific rankings by leveraging contextual embeddings and attention mechanisms. The core idea is to enhance traditional ranking methods with more sophisticated models that can better capture semantic relationships between queries and documents. The Path Ranking algorithm provides a foundational approach where paths in a knowledge graph are used to infer relations between entities[^1]. This method relies heavily on graph traversal techniques combined with statistical analysis over multiple hops within the graph structure. However, this does not directly address how OTC specifically operates but sets up an important background understanding for advanced ranking systems. For implementing OTC rank, one would typically start from preprocessing steps similar to those described in another reference which involves encoding scoring pairs using recurrent neural networks tailored towards specific queries while incorporating attention losses during re-ranking phases[^2]. A Python code snippet demonstrating part of such process might look like: ```python import torch.nn as nn class QuerySpecificRanker(nn.Module): def __init__(self, input_size, hidden_size): super(QuerySpecificRanker, self).__init__() self.rnn = nn.LSTM(input_size=input_size, hidden_size=hidden_size, batch_first=True) def forward(self, x): out, _ = self.rnn(x) return out[:, -1, :] ``` This model uses LSTM layers to encode sequences into fixed-length vectors suitable for comparison against other items in a ranked list based on their relevance scores computed through custom loss functions designed around attentiveness metrics. Regarding consensus protocols mentioned elsewhere, although unrelated directly to OTC ranking, it highlights considerations when designing complex distributed systems requiring agreement among nodes—a concept somewhat analogous to achieving consistent ordering across diverse data points in search results[^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值