codeforces1392D Omkar and Bed Wars

本文探讨了Codeforces编号1392的问题D的简化算法实现。原算法过于复杂,新算法通过处理入度为1的非法节点,极大简化了解决方案。特别地,对于连续的非法节点,可以通过修改边来解决,而无需复杂的调整。此外,还提供了一个更简洁的思路,即直接处理连续的L或R,将长度除以3即可得到答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://codeforces.com/contest/1392/problem/D

sb题写了一年,写的巨复杂

把入度为1的不合法的点拿出来讨论就行了,如果两个相邻的都是不合法的,直接换一条边改两个,否则就该当前这个不合法的边

有更简单的写法,直接把连续的L或R拿出来,长度/3就行了

我的代码就别看了,写得巨丑

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;

const int maxl=4e5+10;

int n,m,cas,k,cnt,tot,ans;
int a[maxl],b[maxl],rudu[maxl];
char s[maxl],ch[maxl];
int in[maxl][2],out[maxl][2]; 

inline int id(int x)
{
	if(x<1) return n+x;
	if(x>n) return x-n;
	return x;
}

inline void prework()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		in[i][0]=in[i][1]=out[i][0]=out[i][1]=0;
		rudu[i]=0;
	}
	scanf("%s",ch+1);
	int st=1;ch[n+1]='0';
	while(ch[st]==ch[st+1])
		st++;
	if(st+1>n)
		st=0;
	cnt=0;
	for(int i=st+1;i<=n;i++)
		s[++cnt]=ch[i];
	for(int i=1;i<=st;i++)
		s[++cnt]=ch[i];
	for(int i=1;i<=n;i++)
	{
		if(s[i]=='L')
		{	
			in[id(i-1)][1]=i,out[i][0]=id(i-1);
			rudu[id(i-1)]++;
		}	
		else
		{
			in[id(i+1)][0]=i;out[i][1]=id(i+1);
			rudu[id(i+1)]++;
		}	
	}
} 

inline bool sb(int i)
{
	if(rudu[i]!=1)
		return false;
	if(in[i][0] && s[i]=='L')
		return false;
	if(in[i][1] && s[i]=='R')
		return false;
	return true;
}

inline void mainwork()
{
	ans=0;int l,r=0;char c,rc;
	for(int i=1;i<=n;i++)
	if(sb(i) )
	{
		ans++;
		if(sb(id(i+1)))
		{
			if(s[i]=='L')
			{
				in[i][1]=0;rudu[i]--;
				s[id(i+1)]='R';
				in[id(i+2)][0]=id(i+1);rudu[id(i+2)]++;
			}
			else
			{
				in[id(i+2)][0]=0;rudu[id(i+2)]--;
				s[id(i+1)]='L';
				in[i][1]=id(i+1);rudu[i]++;
			}
		}
		else
		{
			if(in[i][0] && s[i]!='L')
			{
				s[i]='L';
				rudu[id(i+1)]--;in[id(i+1)][0]=0;
				rudu[id(i-1)]++;in[id(i-1)][1]=i;
			}
			else if(in[i][1] && s[i]!='R')
			{
				s[i]='R';
				rudu[id(i-1)]--;in[id(i-1)][1]=0;
				rudu[id(i+1)]++;in[id(i+1)][0]=i;
			}
		}
	}
}

inline void print()
{
	printf("%d\n",ans);
}

int main()
{
	int t=1;
	scanf("%d",&t);
	for(cas=1;cas<=t;cas++)
	{
		prework();
		mainwork();
		print();
	}
	return 0;
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值