codeforces1312D Count the Arrays

本文详细解析了CodeForces平台上的题目1312/D,分享了解题思路与过程,涉及组合数学原理,通过从m个数字中选择n-1个值构建特定序列,利用C(m,n-1)计算组合数,结合2^(n-2)和(n-2)的乘法原则解决重复问题,最终提供了一个C++实现的代码示例。

https://codeforces.com/problemset/problem/1312/D

傻逼题写了80分钟,留下了不会组合的泪水.jpg

突然想到一般组合题都是从整体考虑就行了,然后就是傻逼题了

从m个数字里取出n-1个值作为这个序列的所有值,C(m,n-1)

其中最大的值只能做 i

而剩下的n-2个值可以在左边或者右边,2^(n-2)

然后那个相等的值可以在这n-2个值里选一个,放在对边,因为每一边只能是单调的,相等的只能在i的两边,*(n-2)

因为相等造成的重复,  /2

#include<bits/stdc++.h>
using namespace std;

const int maxl=3e5+10;
const int mod=998244353;
typedef long long ll;

ll n,m,ans,a,b;
ll jc[maxl],inv[maxl];
char s[maxl];

inline ll qp(ll a,ll b)
{
	ll ans=1,cnt=a;
	while(b)
	{
		if(b&1)
			ans=ans*cnt%mod;
		cnt=cnt*cnt%mod;
		b>>=1;
	}
	return ans;
}

inline void prework()
{
	
	//scanf("%lld%lld",&a,&b);
	scanf("%lld%lld",&n,&m);
	jc[0]=1;
	for(int i=1;i<maxl;i++)
		jc[i]=jc[i-1]*i%mod;
	inv[maxl-1]=qp(jc[maxl-1],mod-2);
	for(int i=maxl-2;i>=0;i--)
		inv[i]=inv[i+1]*(i+1)%mod;
}

inline ll c(int n,int r)
{
	if(r>n) return 0;
	if(r<0) return 0;
	if(r==0) return 1;
	return jc[n]*inv[n-r]%mod*inv[r]%mod;
}

inline void mainwork()
{

}

inline void print()
{
	//printf("%lld\n",ans);
	ans=c(m,n-1)*qp(2,n-2)%mod*(n-2)%mod*qp(2,mod-2)%mod;
	printf("%lld",ans);
}

int main()
{
	int t=1;
	//scanf("%d",&t);
	for(int i=1;i<=t;i++)
	{
		prework();
		mainwork();
		print();
	}
	return 0;
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值