codeforces1214D Treasure Island

本文探讨了在特定网格上寻找最短路关键路径的问题,介绍了一种通过正反两遍BFS查找所有可能点并建立无向图,进而找出割点的方法。此外,文章还讨论了使用两个大质数进行hash的方案数方法,以及一种更简单的DFS通路标记法。

http://codeforces.com/problemset/problem/1214/D

去年区域赛训练的时候做了一道最短路关键路径,暑假学联通分量割点桥的时候又做了一遍那题,今天又碰到了。。。

只能向右走和向下走,那么最多只需要2步就能堵住。如果不能到达,那么答案是0

有一种找关键路径或关键点的方法是正着跑一遍倒着跑一遍,如果那个边(点)的正反方案数相乘等于总方案数,那么他就是关键的。

但是这题不行,因为方案数太大了,所以只能正反两遍bfs把所有可能的点找出来,然后建无向图,找割点。如果存在割点,那么说明堵住这个点就能使(1,1)无法到达(n,m)

upd:

上述的正反方案数的方法,用两个不同的大质数做hash就可以了。

学弟提供了更简单的方法,先dfs出一条通路,然后全部标记为#,再重新dfs看能不能出通路就可以了,是我想复杂了。

#include<bits/stdc++.h>
#define maxl 1000010
using namespace std;

int n,m,ans,cnt,root,ind,ecnt;
int ehead[maxl],dfn[maxl],low[maxl],cut[maxl];
vector<int> a[maxl],num[maxl];
vector<bool> in1[maxl],in2[maxl];
char s[maxl];
int tx[5]={0,0,1,0,-1};
int ty[5]={0,1,0,-1,0};
queue <int> qx,qy;
struct ed
{
	int to,nxt;
}e[maxl*4];
bool in[maxl],ok[maxl];

inline void prework()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		a[i].resize(m+1);
		in1[i].resize(m+1);
		in2[i].resize(m+1);
		num[i].resize(m+1);
		scanf("%s",s+1);
		for(int j=1;j<=m;j++)
		{
			if(s[j]=='.')
				a[i][j]=1;
			else
				a[i][j]=0;
			in1[i][j]=false;
			in2[i][j]=false;
			num[i][j]=++cnt;
		} 
	}
}

inline void bfs1()
{
	while(!qx.empty()) qx.pop();
	while(!qy.empty()) qy.pop();
	qx.push(1);qy.push(1);in1[1][1]=true;
	int x,y,xx,yy;
	while(!qx.empty())
	{
		x=qx.front();qx.pop();
		y=qy.front();qy.pop();
		for(int i=1;i<=2;i++)
		{
			xx=x+tx[i];
			yy=y+ty[i];
			if(xx>=1 && xx<=n && yy>=1 && yy<=m && a[xx][yy])
			{
				if(!in1[xx][yy])
				{
					in1[xx][yy]=true;
					qx.push(xx);qy.push(yy);
				}
			}
		}
	}
}

inline void bfs2()
{
	while(!qx.empty()) qx.pop();
	while(!qy.empty()) qy.pop();
	qx.push(n);qy.push(m);in2[n][m]=true;
	int x,y,xx,yy;
	while(!qx.empty())
	{
		x=qx.front();qx.pop();
		y=qy.front();qy.pop();
		for(int i=3;i<=4;i++)
		{
			xx=x+tx[i];
			yy=y+ty[i];
			if(xx>=1 && xx<=n && yy>=1 && yy<=m && a[xx][yy])
			{
				if(!in2[xx][yy])
				{
					in2[xx][yy]=true;
					qx.push(xx);qy.push(yy);
				}
			}
		}
	}
}

inline void add(int u,int v)
{
	e[++ecnt].to=v;e[ecnt].nxt=ehead[u];
	ehead[u]=ecnt;
}

inline void tarjan(int u,int fa)
{
	int v;
	dfn[u]=++ind;low[u]=ind;
	int son=0;
	for(int i=ehead[u];i;i=e[i].nxt)
	{
		v=e[i].to;
		if(!dfn[v])
		{
			tarjan(v,u);
			low[u]=min(low[v],low[u]);
			if(low[v]>=dfn[u])
			{
				son++;
				if(u!=root || son>1)
					cut[u]=true;
			}
		}
		else
			low[u]=min(low[u],dfn[v]);
	}
}

inline void mainwork()
{
	bfs1();
	if(in1[n][m]==false)
	{
		ans=0;
		return;
	}
	bfs2();
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			if(in1[i][j] && in2[i][j])
				ok[num[i][j]]=true;
			else
				ok[num[i][j]]=false;
		}
	int x,y;ecnt=0;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
			for(int k=1;k<=2;k++)
			if(ok[num[i][j]])
			{
				x=i+tx[k];y=j+ty[k];
				if(x<1 || x>n || y<1 || y>m)
					continue;
				if(ok[num[x][y]])
				{
					add(num[i][j],num[x][y]);
					add(num[x][y],num[i][j]);		
				}
			}
	for(int i=1;i<=cnt;i++)
	if(!dfn[i] && ok[i])
	{
		root=i;
		tarjan(i,i);
	}
	ans=2;
	for(int i=2;i<cnt;i++)
	if(ok[i] && cut[i])
		ans=1;
}

inline void print()
{
	printf("%d",ans);
}

int main()
{
	int t=1;
	//scanf("%d",&t);
	for(int i=1;i<=t;i++)
	{
		prework();
		mainwork();
		print();
	}
	return 0;
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值