3D【5】人脸重建:Learning the Multilinear Structure of Visual Data阅读笔记

本文介绍了使用张量分解技术来表征3D人脸的论文,通过克罗内克积表示不同因素(如光照、表情)的影响。论文采用迭代最小二乘法优化损失函数学习B和A(m)参数。对于3D人脸重建,作者讨论了CNN预测3DMM系数和立方体化的两种方法,并提出可能采用类似论文思想的预测方法。

该论文主要内容是使用张量分解来表征一个3D人脸,如下公式:
这里写图片描述

其中 B(1) B ( 1 ) 是通过大量数据学习出来的,而 A(m) A ( m ) 则是重构出

<think>嗯,用户这次查询的是关于一篇特定论文的算法实现代码。从问题描述看,用户需要的是"Jacobi Algorithm for the Best Multilinear Rank Approximation of Symmetric Tensors"这篇论文的配套源码。 注意到用户使用了非常专业的术语"对称张量的最佳多线性秩逼近",这应该是高阶张量分解领域的核心问题。用户能明确提出算法名称和论文标题,说明ta对该领域有相当深入的了解,大概率是相关专业的研究生或科研人员。 查询中值得关注的细节是"bes"应为"best"的笔误,但结合上下文能明确判断用户指的是最佳逼近问题。由于张量计算领域开源资源相对稀缺,可能需要从以下几个途径帮助用户: 首先想到顶级期刊的补充材料渠道。张量分解领域的代表性论文通常会公开算法实现,比如SIAM期刊就要求作者提交可复现代码。用户提到的Jacobi算法正是对称张量分解的经典方法,作者很可能在个人主页或期刊附件中公布了MATLAB代码。 考虑到算法实现的语言偏好,这类数值计算程序多用MATLAB或Python编写。需要特别提醒用户检查论文的实验部分,通常会有"Code Availability"声明。如果期刊网站没有提供,下一步建议搜索作者所在机构的知识库,比如INRIA这类研究机构会长期维护成果存档。 用户似乎已经掌握核心理论,现在急需代码进行实验验证。除了主文献外,还可以推荐GitHub上的相关开源项目,比如TensorLab库就包含多种对称张量分解实现。不过要注意提醒用户确认算法细节是否完全对应论文版本。 最后需要管理用户预期:如果确实找不到原作者的实现,可以建议基于TensorLy等现代框架自行实现Jacobi旋转更新。这类迭代算法核心部分通常不超过200行代码,关键在高效实现正交变换。 </think>关于Jacobi算法用于对称张量最佳多线性秩逼近的源代码,建议通过以下途径获取: ### 一、核心获取途径 1. **期刊补充材料** 该算法通常发表于数值计算/张量分析领域的顶刊(如 *SIAM Journal on Matrix Analysis*),在论文主页的"Supplementary Material"或"Software"部分查找。例如: $$ \text{若有代码} \implies \text{期刊页面会显示} \ \texttt{[Supplemental\_Code.zip]} $$ 2. **作者个人主页** 主要作者(如P. Comon, L. De Lathauwer等)的学术主页常维护代码库: ```markdown - [INRIA Galaad团队](https://team.inria.fr/galaad/software/) - [KU Leuven ESAT实验室](https://www.esat.kuleuven.be/stadius/) ``` 3. **开源社区平台** GitHub搜索关键词组合: ```bash "symmetric tensor" + "multilinear rank" + jacobi "tensor approximation" + jacobi + symmetric ``` ### 二、备选实现方案 若原始代码不可得,可参考同类权威实现: 1. **TensorLab库**(MATLAB) ```matlab % 安装后调用高阶SVD函数 addpath(genpath('tensorlab_2016')); T = randn(5,5,5); % 创建对称张量 [U, S] = mlsvd(T, [2,2,2]); % 多线性秩(2,2,2)逼近 ``` 2. **TensorLy库**(Python) ```python from tensorly.decomposition import tucker import tensorly as tl # 生成对称张量(需自定义对称化处理) tensor = tl.tensor(...) core, factors = tucker(tensor, rank=(2,2,2), init='random') ``` ### 三、关键算法实现要点 Jacobi法的核心迭代步骤(伪代码): ```python def jacobi_rotation(A, rank, max_iter=100): # A: 对称三阶张量 for dim in range(3): # 三个模态循环 U = initialize_orthogonal_matrix(rank[dim]) for _ in range(max_iter): # 计算Givens旋转角度(关键步骤) theta = compute_optimal_angle(A, U) # 更新正交变换矩阵 U = apply_givens_rotation(U, theta) # 更新张量核心 A = update_core_tensor(A, U, dim) return A, [U1, U2, U3] # 返回核心张量和因子矩阵 ``` > 注:完整实现需处理对称性约束($A_{ijk} = A_{\sigma(ijk)}, \forall \sigma$)和正交化[^1] ### 四、推荐替代资源 1. **[Tensor Toolbox](https://www.tensortoolbox.org/)**:含对称张量分解模块(MATLAB) 2. **[TensorKit.jl](https://jutho.github.io/TensorKit.jl/stable/)**:Julia实现的张量运算库,支持对称约束 3. **[论文复现项目](https://github.com/AndiH/tensor-decompositions)**:社区实现的经典算法集合
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值